Сергей Семиков - Баллистическая теория Ритца и картина мироздания
Заметим, что и Планк, объяснив закон теплового излучения посредством гипотезы квантов, говорил исходно лишь о связи E=hf энергии осцилляторов (электронов в атоме) — с частотой их колебаний f (§ 4.1, § 4.2). А, раз именно такую связь даёт бипирамидальная модель атома, из неё сразу следует закон излучения Планка. Лишь позднее классическую идею Планка извратили так, будто энергия квантуется: свет излучается квантами, фотонами. Судьба идей Планка напоминает историю открытий Ритца. Их выводами воспользовались адепты неклассической физики, проигнорировав классические идеи, в рамках которых эти выводы были получены.
Рассмотренный механизм образования фотоэлектронов приводит к выводу, что фотоэффект можно наблюдать лишь в некотором диапазоне частот. Раз энергия электрона E=MV2/2=hf, а его скорость связана с радиусом орбиты R зависимостью V=2πRf, то f=h/2π2R2M. Но радиус R орбиты электрона в атоме не может быть ни слишком велик, ни слишком мал, а, значит, и диапазон частот излучения, выбивающего электроны, ограничен сверху и снизу. Электрон не должен находиться слишком близко к ядру, где кулоновское притяжение ядра преобладает над магнитной силой (как показывает опыт Резерфорда). Внешний электрон обязан располагаться за сферой внутренних, узловых электронов, экранирующих заряд ядра. Это даёт синюю границу фотоэффекта. С другой стороны, радиус орбиты не может быть больше размеров атома: вне атомного остова магнитное поле быстро спадает, и атом в этой области не может удержать электроны на орбите. Так что, и для внутреннего фотоэффекта, где электрон остаётся в образце и ему не надо совершать работу выхода, должна быть красная граница фотоэффекта: свет с частотой меньшей f=h/2π2R2M — неэффективен (R — радиус атома). И такая красная граница обнаружена.
Интересно рассчитать эти границы, зная минимальный r и максимальный R радиусы орбиты электрона (Рис. 151). Минимальный радиус должен быть порядка сотни радиусов ядра, то есть электроны вряд ли могут располагаться ближе r≈10–13 м. Отсюда, — максимальная частота f=h/2π2r2M≈1021 Гц. Поэтому, излучение с частотой много большей 1021 Гц (жёсткие гамма-лучи) уже не сможет вызвать фотоэффекта (что подтверждают и опыты). Максимальный радиус орбиты составляет порядка радиуса атома R≈10–10 м. Так что, красная граница фотоэффекта будет лежать в области частот fкр=h/2π2R2M≈1015 Гц, но это есть видимый свет. И во внешнем фотоэффекте красная граница действительно соответствует видимому свету. Считают, что это связано с наличием работы выхода — минимальной энергией A, которую должен затратить электрон, дабы покинуть металл (§ 4.12). Тогда наименьшая частота света (красная граница), выбивающего электрон fкр=A/h. Но, не исключено, что красная граница и работа выхода связаны со свойствами самих атомов, а не металла. Тому есть подтверждения.
Так, самую длинноволновую красную границу имеют щелочные металлы, что естественно, поскольку у них наибольшие атомные радиусы R. У этих металлов красная граница расположена в диапазоне видимого света, а предельная длина волны λ=с/fкр растёт с ростом атомного радиуса. У металлов же с меньшими атомными радиусами, красная граница расположена в области ультрафиолета (Таблица 8). Выходит, и красная граница, и сама работа выхода заданы свойствами атомов, а не металла в целом. И это естественно, ведь металл — это, по сути, одна гигантская молекула, — много атомов, слившихся воедино: их электроны обобщены. А работа выхода — это энергия ионизации такой молекулы, пропорциональная энергии ионизации её атомов.
И, точно, у металлов с наименьшей энергией ионизации Eи,— у щелочных металлов, — минимальна и работа выхода A, и эти энергии растут с уменьшением атомного радиуса (Таблица 9). Почему-то этот факт, загадочный с точки зрения квантовой теории, игнорируют, хоть и отмечают, что красная граница тем дальше сдвинута в сторону длинных волн, чем электроположительней атомы металла, то есть, — чем легче они отдают свои электроны [74]. К вопросу о природе работы выхода ещё вернёмся и обсудим её подробней (§ 4.12).
Итак, волновой подход не уступает квантовому, позволяя наглядно объяснить гораздо больше эффектов, прежде казавшихся совершенно загадочными. Волновая теория более удобна и для объяснения комптон-эффекта и рождения электрон-позитронных пар под действием гамма-излучения. Почему же не откажутся от квантового объяснения со всей его несуразностью? Первая причина состоит в игнорировании альтернативных подходов (путь, открытый Планком, давно забыт). Вторая причина — в упорном нежелании академических кругов подвергать сомнению основы квантовой механики, ведь фотоэффект — её фундамент. Поэтому, представители официальной науки всеми правдами и неправдами скрывают альтернативные пути и проблемы квантовой теории фотоэффекта. Это замалчивание, скрытое противостояние классической и неклассической физики, — восходит корнями к началу XX века, к тому же Столетову, с внезапной смертью которого связана тёмная история, каких немало в науке.
Столетов был сторонником классического подхода в физике и стоял на страже здравого смысла в науке, за что и пострадал [15]. Дело в том, что другой физик, Б. Голицын, задолго до Эйнштейна и Луи де Бройля выдвинул идею корпускулярно-волнового дуализма, в том числе в отношении света, приписав ему некую температуру, как меру энергии атомов света (подобно фотонам, имеющим свои энергии). Столетов выступил с резкой критикой этой идеи и добился того, что её признали ошибочной. После это ставили в вину Столетову: не окажи он своим авторитетом такого влияния, идея корпускулярно-волнового дуализма прижилась бы много раньше и принадлежала бы России. Якобы Столетов сам загубил идею, объяснявшую исследованный им фотоэффект. Но, на деле, Столетов, будучи тонким теоретиком и экспериментатором, глубоко чувствовал истинную природу явлений, интуитивно понимал, что идея корпускулярно-волнового дуализма, идущая от ненавистного ему мистического энергетизма Маха и Оствальда, — абсурдна, чужда материализму и чёткому атомистическому представлению о мире (§ 5.14). Не случайно, Столетов был другом и научным единомышленником таких учёных-материалистов, как Менделеев, Тимирязев, Циолковский, бывших противниками энергетизма и мистики [23].
Трагичен конец этой истории. Сторонники энергетизма Голицына, используя своё высокое положение, в ответ на критику Столетова добились, чтобы у того стали возникать служебные неприятности [15, 23]. А Столетов, будучи человеком принципиальным, не мог поступиться своими научными убеждениями. Началась настоящая травля учёного. Всё кончилось тяжёлым сердечным приступом и скорой смертью Столетова. Эта история мало освещалась. И, до сих пор, подобные тёмные дела продолжают замалчивать, помогая некой скрытой силе творить беспредел в науке и проводить в жизнь абсурдные неклассические идеи, сметая с пути всех, кто им сопротивляется. Именно эти силы не допускали таких гигантов мысли, как Столетов и Менделеев, — в Российскую Академию Наук, где ещё со времён её основателя — Петра I, установилось засилье иностранцев, не допускавших в академическую среду отечественных, оригинально и смело мыслящих учёных. И, до сих пор, в РАН главенствуют деятели некоренного происхождения, блокирующие прогрессивные направления исследований — под предлогом борьбы с лженаукой, которую сами на деле и представляют. Лишь немногие учёные-герои, вроде Столетова, осмеливаются, вопреки вышестоящим чинам и академикам, публично выступить против абсурда, обнажая его глупость, как в сказке про голого короля. Уже за одно это такие учёные достойны уважения. Их усилиями свет однажды разгонит мрак, царящий в учении о свете и фотоэффекте.
Итак, видим, что фотоэффект гармонично вписывается в классическую картину мира, которая, вдобавок, объясняет гораздо больше особенностей фотоэффекта. Достаточно лишь признать, что свет — это всё же волна, а не фотоны, и принять магнитную модель атома Ритца. В рамках этой модели находит строгое обоснование гипотеза Планка о том, что источник энергии фотоэлектронов скрыт не в свете, а в металле, тогда как свет служит своего рода запальной искрой, ведущей к взрыву металла электронами, словно бочонка с порохом или заряда шрапнели.
§ 4.4 Селективный фотоэффект
Селективность фотоэлектрических явлений очень напоминает резонансные эффекты. Дело происходит так, как будто электроны в металле обладают собственным периодом колебаний, и по мере приближения частоты возбуждающего света к собственной частоте электронов амплитуда колебаний их возрастает и они преодолевают работу выхода. Подтверждение подобного взгляда можно было бы видеть в том обстоятельстве, что явление селективного фотоэффекта сильно зависит от направления поляризации света и угла падения.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сергей Семиков - Баллистическая теория Ритца и картина мироздания, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


