Сергей Семиков - Баллистическая теория Ритца и картина мироздания
§ 3.12 Природа ядерных сил
Ядерные силы имеют много особенностей, но у них нет особой природы. Отнюдь. Они кулоновские силы, электростатические. И потому нет необходимости ни в теориях обменных сил, ни в аналогиях с вращением нуклонов или пионов по орбитам атомарного типа.
В. Мантуров, "Ядерные силы — предложение разгадки" [79]Притяжение нуклонов, ядер возникает, как было выяснено, за счёт их электрон-позитронной структуры (§ 3.2, § 3.9). Заряды e- и e+, расположенные, словно ионы в кристалле соли, периодично, в шахматном порядке, встают друг против друга. За счёт этого, даже нейтральные частицы такой структуры притягиваются (Рис. 125). Это подобно притяжению двух диполей: они нейтральны, но при их взаимной ориентации, возникает сила притяжения, быстро спадающая с удалением (такую электромагнитную природу ядерных сил физики предполагали уже давно [19, с. 228]). Подобный механизм ядерного взаимодействия ведёт к тому, что оно заметно лишь на дистанциях r порядка периода (шага) электрон-позитронной решётки, равного классическому радиусу электрона 10-15 м. Оттого такой радиус действия имеют и ядерные силы. Физики не обращали внимания на это совпадение, поскольку не могли его объяснить. Когда, в ходе сближения частиц, ядерная сила превысит силу кулоновского отталкивания, ядра станут притягиваться. С этого момента энергия притяжения преобразуется в энергию ядерной реакции, поскольку притяжение придаёт сходящимся ядрам скорость, кинетическую энергию, — как при аннигиляции e- и e+ (§ 1.16).
Рис. 125. Силы притяжения частиц со структурой электрон-позитронного кристалла (ядерные силы) и аналогичное взаимодействие диполей.
Аналогично ядерным реакциям, протекает распад-синтез элементарных частиц и выделение энергии. Деление частиц — это не обращение в новые частицы, а распад на составляющие, с сохранением их числа, — как в ядерной реакции сохраняется число протонов и нейтронов. Элементарные частицы, представляющие собой кристаллические комплексы из e- и e+, скрепляются воедино электростатическими силами притяжения, аналогичными ядерным. У ядер и частиц устойчивость, стабильность определяются формой этих кристаллов (§ 3.9). Чем более она совершенна, симметрична, ближе к правильному телу с плоскими гранями, — тем более устойчива, прочна частица. Так и в жизни: прочнее компактные вещи, близкие к кубу, лишённые выступов.
Почему же при делении частица всегда разбивается на одни и те же частицы, — на осколки правильной формы, и распады идут известным путём? Если бить однотипные кирпичи, кубики стекла, их осколки каждый раз будут иметь разные массы и формы, притом неправильные, в то время как частицы разбиваются всегда на известные элементарные частицы, с их строго заданной формой и массой. Всё дело в изотропных (одинаковых во всех направлениях) свойствах кирпичей и стекла, отчего им энергетически безразлично, на какие части ломаться. Зато, у элементарных частиц, за счёт кристаллической структуры, прочность сильно зависит от направления деформации, отчего кристаллы при ударе разваливаются по плоскостям спайности. Вспомним, что частицы, построенные из зарядов e+ и e-, подобны кристаллам соли из ионов Na+ и Cl- (Рис. 120). Так вот, если ударить молотком по кристаллу каменной соли, он развалится на куски правильной формы — на кубики и параллелепипеды [164]. То же и при распаде частиц, делящихся на правильные фрагменты, — на другие стандартные частицы, причём с заданным соотношением их масс и форм, поскольку частица разбивается на предельно устойчивые части, ломаясь в местах наименьшей прочности. Ведь, как нашли выше, частицы, подобно зданиям, пирамидам, построены из правильных кирпичей, блоков (мезонов, § 3.8), распадаясь при ударе не на мелкую пыль и крошку, а на эти "кирпичи" и крупные блоки из них. Частица может делиться и несколькими путями. Но в этом не больше странного, чем в способности молекул химически делиться двумя-тремя способами. Вероятность данного пути распада определяется прочностью образуемых фрагментов. Чем симметричней, устойчивей возникшие частицы, то есть, чем ниже их остаточная энергия и выше энерговыделение, тем вероятней данный путь распада, что подтверждает и опыт. Потенциальная энергия системы стремится к минимуму.
Рис. 126. Взаимодействие электрона с одномерным знакопеременным распределением заряда.
Чтобы лучше понять природу ядерных сил и изучить их количественно, рассмотрим одномерное периодичное знакопеременное распределение зарядов. Его можно представить зависимостью плотности заряда ρ от координаты x в виде
ρ=(e/r02)cos(x/r0),
где r0 — радиус электрона, e — его заряд. Это — как бы набор чередующихся заряженных нитей с поверхностной плотностью ρ (Рис. 126). Сила притяжения электрона к тонкой заряженной нити шириной dx, есть
dF=eρdx/2πε0R,
где R — расстояние до элемента dx. Нам важна лишь поперечная к оси х составляющая силы притяжения
dFz=dF(z/R)=eρzdx/2πε0R2,
где R2=z2+x2. Интегрируя dFz в пределах изменения x от минус до плюс бесконечности, найдём по таблице интегралов силу
Fz= (e2/2r02ε0)exp(—z/r0).
Такова сила притяжения к системе электрона, помещённого над положительным зарядом (позитроном, Рис. 126). И с той же силой он будет отталкиваться, находясь напротив отрицательного заряда (электрона), как легко увидеть, изменив знак ρ.
Получить двумерное периодичное распределение заряда можно, сложив два одномерных ρ(x)=(e/r02)cos(x/r0) и ρ(y)=(e/r02)cos(y/r0), как бы переплетя две системы скрещенных заряженных нитей в полотно, ткань, сетку (Рис. 127). Тогда, сила притяжения к такой электрон-позитронной решётке, по принципу суперпозиции, есть просто сумма отдельных сил: Fz+Fz=(e2/r02ε0)exp(—z/r0). Таким образом, электрон притягивается к положительным узлам этой решётки, и сила притяжения экспоненциально спадает с удалением z от плоскости кристаллической частицы. Материя тел и частиц "соткана" из положительных и отрицательных зарядов, словно простая тканая материя — из переплетённых нитей основы и утка, выходящих на поверхность в шахматном порядке, подобно электронам и позитронам, образующим своего рода шахматную доску. Электроны, как магнитные шахматные фигурки, прилипают к этой шахматной доске в точно отведённых им клетках (напротив позитронов, Рис. 101).
Рис. 127. Сложение двух одномерных распределений заряда даёт двумерное, как в электрон-позитронной решётке.
Так же прилипают к электрон-позитронным слоям и протоны с нейтронами. Ведь и сами они подобны кристаллам, образованным электронами и позитронами (§ 3.2, § 3.9). Протон и нейтрон стягиваются гранями так, что электроны одной частицы становятся против позитронов другой и наоборот. Тогда полная сила F притяжения частиц равна сумме сил притяжения всех электронов и позитронов: F=N(e2/r02ε0)exp(—z/r0), где N — число зарядов в контактирующих гранях. То есть, сила сцепления двух протонов или нейтрона и протона спадает с удалением z по экспоненте. Именно такой закон и был открыт для ядерных сил. Причём, предложенный механизм ядерного притяжения сразу объясняет, почему ядерные силы — короткодействующие, а характерный радиус их действия совпадает с классическим радиусом электрона r0 (порядка 10–15 м), чего квантовая физика объяснить не могла. Всё дело в том, что множитель exp(—z/r0) в выражении для F, по мере удаления, быстро стремится к нулю, делая ядерную силу F заметной лишь на расстояниях z порядка r0 и, практически неощутимой, — на расстояниях бóльших 3r0.
Выходит, ядерные силы, так же как магнитные и гравитационные, имеют электрическую природу [19, 79]. Два протона при сближении сначала отталкиваются, поскольку сила электрон-позитронного взаимодействия их граней мала. По мере сближения, эта ядерная сила быстро нарастает и, наконец, превосходит силу кулоновского отталкивания. Напомним: протон образуют примерно 900 электронов и 900 позитронов, но позитронов на один больше, чем вызван положительный заряд протонов, который и отталкивает частицы. Силы взаимодействия прочих электронов и позитронов уравновешены. Но, при сближении и взаимной ориентации протонов, за счёт их упорядоченного строения, баланс сил нарушается: возникает притяжение их кристаллических решёток, удерживающее частицы вместе. Влияние взаимной ориентации нуклонов и ядер на степень их взаимодействия, действительно, давно обнаружено [19, с. 319], но от незнания природы ядерных сил и структуры ядерных частиц, этот эффект, подобно магическим числам, не находил объяснения.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сергей Семиков - Баллистическая теория Ритца и картина мироздания, относящееся к жанру Техническая литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


