Борис Семенов - Путеводитель в мир электроники. Книга 2
Запираемые приборы более удобны для практики, но радиолюбители тем не менее широко используют и классические тиристоры в автоматах световых эффектов, светомузыкальных установках и др. Тиристоры в этих устройствах включаются последовательно с нагрузкой, и переменное напряжение закрывает эти приборы при спадании до нуля.
Одно из главных достоинств тиристоров — возможность пропускать через себя большие токи и выдерживать десятикратные токовые перегрузки. Например, мощный импортный тринистор ST70 °C20L0 (выпускается фирмой International Rectifier) допускает пропускание через себя тока с постоянным значением до 2000 А и кратковременными перегрузками до 13200 А. Возможности широко распространенных тиристоров серий КУ202 и КУ208 намного скромнее — максимальный постоянный ток до 10 А при максимальном напряжении между электродами до 400 В. Благодаря своей низкой цене эти тиристоры наиболее широко используются в радиолюбительских конструкциях, а в промышленном оборудовании ставят более надежные и мощные из серий Т122-25 (на 25 А), Т132-40 (на 40 А).
Следует запомнить, что некоторые тиристоры не допускают приложения к своим электродам обратного напряжения, а некоторые — его вполне хорошо «держат». В любом случае при разработке конструкции или при подборе аналогов нужно обращать внимание на это обстоятельство. Если под рукой не найдется подходящей замены, можно изготовить диодный мост и исключить подачу отрицательного напряжения на прибор.
Конечно, тиристоры по сравнению с современными транзисторами, работающими в ключевом режиме, обладают рядом существенных недостатков, ограничивающих их область применения (например, низкое быстродействие, из-за чего не могут работать на частотах более 10…100 кГц), но пока они значительно дешевле и обладают высокой надежностью (намного выше, чем у механического ключа, так как при переключения нет искрения), чем и объясняется широкое использование таких компонентов.
Однопереходные транзисторы
Лишних извилин не бывает.
Борис КрутиерВ арсенале разработчиков схем присутствует и несколько необычный транзистор, называемый однопереходным (в зарубежной литературе его называют еще двухбазовым диодом). Такой элемент имеет нелинейную выходную характеристику, на которой есть участок с отрицательным сопротивлением, рис. 13.6 (отрицательным называют такое сопротивление, у которого при увеличении напряжения ток уменьшается, т. е. все наоборот по отношению к тому, как должно быть по закону Ома). Это свойство позволяет использовать такой транзистор в схемах генерации импульсов.
Рис. 13.6. Обозначение на схеме однопереходного транзистора и его вольт-амперная характеристика
В качестве примера на рис. 13.7 показан практический генератор на «однопереходнике» вместе с диаграммами напряжений в контрольных точках.
Рис. 13.7. Практическая схема применения однопереходного транзистора (а) и поясняющие работу диаграммы напряжений (б)
Так как обычно частота таких генераторов не выходит за звуковой диапазон, то подключив параллельно с конденсатором С1 пьезоизлучатель, мы можем сигнал услышать (звуковой излучатель с маленьким сопротивлением, например, динамик можно включить вместо резистора R3).
В чем заключается преимущество таких схем по сравнению с генераторами, выполненными на обычных транзисторах или микросхемах? Основных достоинств всего четыре, но зато какие!
Первое, что сразу бросается в глаза, — для выполнения генератора требуется минимальное число дополнительных элементов, к тому же все они могут быть малогабаритными.
Второе преимущество — это способность схемы формировать на выходе импульс с большим током, доходящим до единиц ампер. Такие импульсы нужны для электронного управления некоторыми компонентами, например мощными тиристорами или для запуска автогенератора в импульсном источнике питания (последнее применение можно встретить во многих схемах источников питания отечественных телевизоров).
Третье достоинство — генератор легко синхронизировать с частотой питающей сети, для чего достаточно подать на питание схемы не постоянное, а пульсирующее напряжение (эта возможность часто используется в импульсных регуляторах).
Четвертое: малый ток потребления даже при большом выходном импульсном токе. Чтобы понять, почему так происходит, давайте более подробно рассмотрим работу генератора импульсов. В момент включения схемы транзистор VT1 заперт и происходит заряд конденсатора С1 через резистор R1 до порогового уровня, при котором у транзистора открывается переход эмиттер-база 1 (в этот момент он резко уменьшает свое сопротивление — точка А на графике).
Через открытый переход и нагрузочный резистор R3 конденсатор С1 быстро разряжается, отдавая всю накопленную в течение продолжительного времени энергию. Вместо R3 можно установить управляющую часть оптрона или обмотку импульсного трансформатора. Резистор R2 ограничивает прямой ток через транзистор в то время, когда он имеет открытый переход.
Частота такого генератора определяется по формуле:
где k = 0,22…1,61 — коэффициент, зависит от типа применяемого транзистора и связан с формой его выходной характеристики (рис. 13.6).
Знакомство с аналоговыми микросхемами
Мы берем на хранение чужие мысли и знания, только и всего. Нужно, однако, сделать их собственными.
Мишель де МонтенъC простыми усилителями электрических сигналов, построенными на одном-двух транзисторах и некоторых микросхемах, вы уже успели познакомиться и теоретически, и практически по первой книге. Для того чтобы улучшить параметры усилителей сигналов, пришлось схемы усложнять, вводить многокаскадные решения, совмещать разные типы схем, оптимизировать их. В процессе разработок, — а произошло это в конце 50-х гг. XX в. — выяснилось, что возможно заключить несколько транзисторов в отдельный корпус, сделать выводы от нужных точек схемы и предоставить потребителю уже почти готовое устройство, для работы которого достаточно подключать небольшое число дополнительных элементов. Так появились интегральные микросхемы. Их внедрение позволило значительно уменьшить размеры конструкций и снизить их стоимость. Ведь микросхема часто стоит намного дешевле, чем та же самая схема, собранная из дискретных компонентов. Но микросхема — это не простой перенос дискретных элементов в один корпус. Технологически выполнять такое сложно и невыгодно. Во всяком случае времена, когда так делали, уже давно прошли. Обычно на одном кристалле изготавливают специально оптимизированные схемы, в которых можно обойтись без внутренних конденсаторов и с минимальным числом резисторов. Сами резисторы делают как источники стабильного тока на полупроводниках.
Операционные усилителиСегодня в технике усиления и преобразования сигналов широко используется разновидность универсальных аналоговых микросхем — операционный усилитель (ОУ). Этот вид микросхемы появился в 60-х гг. XX в. и первоначально предназначался для создания аналоговых электронно-вычислительных машин, устройств обработки радиолокационной и гидроакустической информации и других автоматических высокоточных устройств. На основе операционного усилителя были разработаны типовые схемы, благодаря применению которых можно осуществлять простейшие математические операции: сложение, вычитание, умножение, интегрирование, логарифмирование. Современная элементная база позволяет получать точность преобразований до 0,1 %.
Наращивая схемы из таких блоков, как из детского конструктора, удавалось обрабатывать сложные сигналы, преобразовывать информацию, заключенную в них. Ныне любые сигналы подвергают математической обработке уже другими методами, о которых рассказывает глава «Логика для цифрового мира».
А операционные усилители, по сути представляющие собой усилители постоянного тока, до сих пор широко выпускаются, но используются в другом качестве. На их основе можно создавать широкополосные усилители, фильтры, генераторы колебаний разной формы, элементы стабилизации, измерительные усилители и еще множество других интересных устройств. Мы не сможем рассказать о всех применениях ОУ, но основные схемотехнические идеи приведем обязательно.
Классический операционный усилитель изображен на рис. 13.8. Он имеет два входа — прямой (обозначается знаком «+») и инверсный («—» или кружочек на входной линии), выход, выводы питания, — у некоторых есть еще выводы подключения частотной коррекции (FC) и балансировки нуля (NC). Номера выводов корпуса ставятся за пределами основного контура квадрата (треугольника), а внутри квадрата имеется условный знак в виде треугольничка, который и указывает на то, что это микросхема для усиления сигналов (на основе ОУ изготавливают и другие микросхемы, например, компараторы — там условный знак будет другим).
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Борис Семенов - Путеводитель в мир электроники. Книга 2, относящееся к жанру Радиотехника. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


