`
Читать книги » Книги » Научные и научно-популярные книги » Психология » Иной разум. Как «думает» искусственный интеллект? - Андрей Владимирович Курпатов

Иной разум. Как «думает» искусственный интеллект? - Андрей Владимирович Курпатов

1 ... 42 43 44 45 46 ... 76 ВПЕРЕД
Перейти на страницу:
так, как это описали два упомянутых нобелевских лауреата по физио-логии и медицине.

• Йошуа Бенжио сосредоточился на проблеме «обучения без учителя». Он пытался заставить нейронные сети находить структуру в данных самостоятельно, без человеческих подсказок. Его работа над автоэнкодерами и генеративными моделями была направлена на то, чтобы, по сути, научить ИИ «думать» об объектах, а не просто их классифицировать[147].

Долгое время, впрочем, на эти идеи большого внимания не обращали. Пока, наконец, в 2012 году нейронная сеть AlexNet, созданная учениками Хинтона, не продемонстрировала в рамках публичных соревнований ImageNet такой результат, который казался почти невозможным[148].

Это был день, когда закончилась долгая «зима» искус-ственного интеллекта и началась революция глубокого обучения.

Конец «зимы»

Суть революции состояла в том, что учёные отказались от попыток сделать интеллект прозрачным и объяснимым. Они предположили, что он может возникать эмерджентно — просто из статистических закономерностей. И не из сложных структур, а из сложнейшего взаимодей-ствия миллионов простых элементов, настроенных в процессе обучения.

Самым мощным потрясением, конечно, стал феномен «всплывающих» способностей: модель, обученная предсказывать текст, вдруг продемонстрировала понимание арифметики или логики, чему она не обучалась. Это было похоже на чудо: «чёрный ящик» давал правильные ответы, но никто не понимал, как именно[149][150].

Но что было ещё более странным, а точнее — контринтуитивным: ИИ мог классифицировать кошку с точностью 99 %, но ему было абсолютно всё равно, что такое кошка. У него не было ни целей, ни желаний, ни внутренней озадаченности, а лишь мощная способность распознавать некие паттерны.

То есть ИИ распознавал не нашу «кошку», а паттерн, который стоит за тем, что мы считаем «кошкой». Иными словами, его знание и понимание «кошки» находились в совершенно ином умвельте — мире статистических корреляций — и радикально отличались от того, чем «кошка» является для нас — как мы её себе представляем, как мы о ней думаем, что это для нас значит.

Третья волна: инструктивные LLM и агенты, 2017 — н. в

Любая достаточно развитая технология неотличима от магии.

Артур Кларк

Глубокие нейронные сети показали, что они способны учиться, но оставался вопрос взаимодействия… Так начался поиск разума, способного следовать инструкциям и оперировать в открытом, непредсказуемом мире. И этот прорыв стал возможен благодаря трём ключевым инновациям, каждая из которых, по сути, стала шагом к воспроизведению критически важных функций человеческого познания.

1. Трансформеры: «рабочая память» и контекст

Нейросети обрабатывали текст последовательно, слово за словом, и потому с трудом удерживали контекст. То есть к концу абзаца модель уже «забывала», о чём шла речь в его начале. Именно с этой проблемой справилась архитектура трансформера, представленная исследователями Google в 2017 году[151].

Гениальность трансформера, как мы уже с вами знаем, состоит в «механизме внимания»: вместо последовательности слов трансформер мог «видеть» сразу все слова в тексте одновременно. И это, по сути, аналог человеческой рабочей памяти, благодаря которой мы способны к пониманию сложных контекстов.

Впервые машина научилась не просто обрабатывать слова, но строить богатое, динамическое представление о связях между ними в конкретной ситуации.

2. «Воспитание» машины

Ранние трансформеры (такие, например, как GPT–2) были потрясающими, но в некотором смысле «дикими». Обученные на огромных массивах данных из интернета, они могли и сгенерировать блестящее эссе, и создать токсичный или просто бессмысленный текст.

Решение пришло в виде двухэтапного обучения, похожего на человеческое воспитание. Сначала модель проходит «общее образование» на гигантских массивах текстов, а затем она отправляется в «школу хороших манер» — проходит «инструктивную настройку» и «обучение с подкреплением на основе обратной связи от человека» (RLHF)[152].

Процесс RLHF, в сущности, не является каким-то суперсложным: машине даётся запрос, она генерирует несколько вариантов ответа, а человек-оценщик выбирает лучший из них. Этот выбор служит «наградой», сигналом подкрепления, который корректирует поведение модели в соответствующем направлении.

Миллионы таких циклов «обучают» модель не только продолжать текст, а следовать при этом инструкциям: быть вежливой, избегать вредных тем — по сути, усваивать неявные социальные нормы, заложенные в предпочтениях оценщиков. Мы начали не просто учить машину языку, мы начали её «воспитывать», прививая ей желаемое нами поведение.

3. Обучение рассуждению

Впрочем, даже «воспитанные» модели часто терпели неудачу в задачах, требующих многошаговых рассуждений. Например, при решении математических задач они пытались «угадать» ответ, подобно человеку, решающему сложное уравнение в уме, и, разумеется, часто ошибались.

Проблема снова была преодолена компанией Google, о чём она и поведала миру в 2022 году. Исследователи обнаружили, что если просто попросить модель «думать по шагам», её производительность резко возрастает[153].

Представим себе задачку из школьного учебника по математике: «Если у фермера 5 корзин по 10 яблок в каждой и он продал 3 корзины, сколько яблок у него осталось?» Если модель рискнёт ответить сразу, она легко запутается. Поэтому ей предложили действовать последовательно:

• сначала посчитаем общее количество яблок (5 корзин по 10 яблок — это 50);

• затем посчитаем, сколько яблок было продано (3 корзины по 10 яблок — это 30);

• теперь вычтем проданные из общего количества (50 − 30 = 20).

В общем, перед нами искусственный аналог психологической интроспекции и последовательного логического вывода: заставляя машину «проговаривать» свои шаги, исследователи стабилизировали её мыслительный процесс и позволили ей решать гораздо более сложные задачи.

Таким образом, третья волна привела нас к созданию систем, которые имитируют полный цикл разумного действия:

• память — гигантский объём знаний, сохранённый в параметрах модели;

• представление — способность трансформера строить сложную, контекстуальную модель запроса;

• цель — инструкция, которую получает модель;

• действие — план, код или текст, выстроенный с помощью «цепочки мыслей».

В результате мы получили мощный разум, способный решать сложнейшие задачи. Вроде бы теперь все самые смелые фантазии должны реализоваться! Но, как это обычно бывает: когда мы достигли дна — снизу постучали…

Проблемы без решения

И если ты долго смотришь в бездну, то бездна тоже смотрит в тебя.

Фридрих Ницше

Мы создали машины, которые справляются с самыми разными задачами на уровне лучших умов человечества. Они способны анализировать немыслимые объёмы данных, пишут компьютерный код, диагностируют редкие заболевания, создают поэзию и ведут диалог с завораживающей правдоподобностью.

И всё же в самом сердце этого технологического чуда зияет странная, почти метафизическая пустота. «Мышление» ИИ, при всей вычислительной мощи этих машин и их предельной учтивости в общении, кажется нам каким-то странно-чуждым и безжизненным.

Фундаментальное отличие, которое мы интуитивно ощущаем —

1 ... 42 43 44 45 46 ... 76 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Иной разум. Как «думает» искусственный интеллект? - Андрей Владимирович Курпатов, относящееся к жанру Психология / Публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)