Солнечные элементы - Марк Михайлович Колтун
Главная отличительная особенность разработанной установки — наличие подсветки лампами-фарами, на отражатель и пропускающее окно которых нанесены многослойные интерференционные фильтры, корректирующие спектр встроенной в фару лампы под солнечный. На поверхности измеряемого элемента создается облученность 1360 Вт/м2, которая контролируется термоэлектрическим радиометром с большим полем зрения. Радиометр имеет точную энергетическую калибровку в широком спектральном интервале. Лампы подсветки получают энергию от высокостабильных источников питания, имеющих низкое содержание высокочастотных гармоник.
Монохроматическое излучение достаточной интенсивности обеспечивается в этой установке дифракционным монохроматором с решеткой 600 линий/мм. Для исключения влияния спектров высших порядков использовалось устройство (переменное гасящее сопротивление, включенное в цепь лампы и связанное с поворотным механизмом дифракционной решетки монохроматора), уменьшающее цветовую температуру тела накала лампы снижением тока при работе в длинноволновой области спектра. Ток короткого замыкания при монохроматическом освещении во время этих измерений определяется при фиксации светового луча на различных участках фотоактивной поверхности эталонного солнечного элемента и затем усредняется по всей рабочей поверхности.
Монохроматический поток, модулированный частотой 900 Гц, направляется на элемент. Взаимное расположение щели монохроматора и модулятора, а также форма окна модулятора выбираются таким образом, чтобы монохроматический модулированный поток был по возможности приближен к синусоидальному. Необходимое условие — измерение в режиме короткого замыкания, в связи с чем переменный сигнал снимается через разделительную емкость, а солнечный элемент шунтируется сопротивлением порядка 0,5 Ом. Высокочастотная составляющая тока короткого замыкания подается на селективный усилитель с калиброванным коэффициентом усиления, напряжение с которого преобразуется в пропорциональный сигнал измерительным преобразователем и регистрируется в цифровой и графической формах. Для использования данных каждого эксперимента в расчетах на ЭВМ информация может быть представлена на перфоленте в стандартном коде.
Пересчет результатов измерений спектрального распределения чувствительности нескольких кремниевых солнечных элементов на спектр внеатмосферного солнца и затем расчет интегрального значения тока короткого замыкания элементов показал, что в случае нелинейных солнечных элементов ошибка в определении градуировочного значения тока для внеатмосферных условий из-за измерения чувствительности без подсветки имитированным солнечным излучением может достигать 7 %. Использование установки с модулированным сигналом и подсветкой имитированным солнечным излучением позволяет устранить эту погрешность.
Абсолютное значение спектральной чувстительности рассчитывается как отношение Iκ3(λ)/E (λ). Для определения коэффициента собирания Q (Iκ3 на один поглощенный фотон) дополнительно измеряется коэффициент отражения от поверхности солнечных элементов в той же области спектра.
Эксперименты и расчеты показывают, что составляющая верхнего легированного слоя кремния в суммарном коэффициенте собирания Q при переходе к малой глубине залегания p-n-перехода и увеличении скорости поверхностной рекомбинации начинает уменьшаться.
При создании солнечных элементов из арсенида галлия также наблюдается отмеченная тенденция. Гомогенный р-n-переход в этом материале создается обычно с помощью мелкой термодиффузии цинка — примеси p-типа — в исходный арсенид галлия n-типа. Однако существенно более высокое значение коэффициента поглощения в арсениде галлия (по сравнению с кремнием) и его резкая спектральная зависимость приводят к тому, что почти все фотоактивное излучение поглощается в верхнем легированном слое p-типа и собирается из него нижележащим p-n-переходом в арсениде галлия.
Были выполнены также расчеты для солнечных элементов из кремния и арсенида галлия при близкой толщине слоев и одинаковой скорости поверхностной рекомбинации. Результаты этих расчетов показывают, что составляющая базового слоя в суммарном коэффициенте собирания Q становится заметной лишь в длинноволновой области спектральной чувствительности солнечных элементов из арсенида галлия (рис. 2.17, кривая 4).
Рис. 2.17. Спектральная зависимость составляющих легированной (1, 2) и базовой (3, 4) областей в суммарном коэффициенте собирания для солнечных элементов 1,3 — кремний (n- на р-типа); 2,4 — арсенид галлия (р- на n-типа)
По спектральной чувствительности исследованных солнечных элементов были рассчитаны время жизни и диффузионная длина неосновных носителей в областях по обе стороны р-n-перехода. Выяснилось, что дополнительная причина столь незначительного влияния базовой области на суммарный коэффициент собирания в элементах из арсенида галлия — чрезвычайно малая диффузионная длина неосновных носителей в этом материале, не превышающая 1,5 мкм.
При бесконечно большом времени жизни и диффузионной длине неосновных носителей в обоих слоях солнечного элемента и при нулевой скорости поверхностной рекомбинации (а также при R=0) коэффициент собирания Q будет равен единице во всей области фоточувствительности данного полупроводникового материала, а на кривой спектральной чувствительности появится резкий максимум при энергии квантов ⅛v, равной ширине запрещенной зоны Eg полупроводника, из которого изготовлен солнечный элемент, после чего спектральная чувствительность начнет линейно убывать с увеличением частоты (т. е. уменьшением длины волны) падающего оптического излучения.
При отсутствии поверхностной и объемной рекомбинации все носители, созданные в полупроводнике излучением длиной волны λ, должны собираться и разделяться p-n-переходом:
Iκ3(λ) =qN0(λ) =qE (λ) ∕ hv.
Отсюда видно, что спектральная чувствительность линейно зависит от длины волны:
Iκ3(λ)E/(λ)=q/hv=0,8×103λ.
Длинноволновой край спектральной чувствительности солнечных элементов ограничен лишь энергетическим положением края основной полосы поглощения (или, как его ранее часто называли, красной границей фотоэффекта), которое определяется шириной запрещенной зоны полупроводника и характером оптических переходов зона — зона. Левый край чувствительности для планарного солнечного элемента зависит в основном от скорости поверхностной рекомбинации на обращенной к свету поверхности элемента.
Ниже представлены предельные значения спектральной чувствительности полупроводникового солнечного элемента планарной конструкции, рассчитанные при указанных ранее идеализированных условиях (нулевая скорость поверхностной рекомбинации, бесконечно большие время жизни и диффузионная длина неосновных носителей заряда и нулевое значение коэффициента отражения):
Анализ результатов расчетного и экспериментального определений спектральной чувствительности позволяет сделать несколько выводов о выборе основных направлений совершенствования технологии солнечных элементов.
Улучшение спектральной чувствительности в длинноволновой области может быть достигнуто за счет увеличения времени жизни неосновных носителей в базовом слое, например, путем перехода к более чистому и высокоомному исходному полупроводниковому материалу и сохранения его свойств
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Солнечные элементы - Марк Михайлович Колтун, относящееся к жанру Прочая научная литература / Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


