`
Читать книги » Книги » Научные и научно-популярные книги » Науки о космосе » Астрономия. Популярные лекции - Владимир Георгиевич Сурдин

Астрономия. Популярные лекции - Владимир Георгиевич Сурдин

1 ... 62 63 64 65 66 ... 75 ВПЕРЕД
Перейти на страницу:
призвано большое количество женщин, которые сформировали так называемый «гарем Пикеринга». Созданная ими спектральная классификация была первым вкладом в науку женского коллектива, который оказался гораздо более эффективным, чем ожидалось.

Рис. 11.17. Схема электронных энергетических уровней атома водорода и переходов между ними.

В то время люди вообще не представляли, на основе каких физических явлений формируется спектр, его просто фотографировали. Пытаясь построить классификацию, астрономы рассуждали так: в спектре любой звезды есть линии водорода, по убыванию их интенсивности можно упорядочить все спектры и сгруппировать их. Группы спектров обозначили латинскими буквами по алфавиту: с самыми сильными линиями — класс A, слабее — класс B и т. д.

Вроде бы все было сделано правильно. Но через несколько лет родилась квантовая механика, и мы поняли, что вовсе не обязательно, чтобы обильный элемент был представлен в спектре мощными линиями, а редкий элемент никак себя не проявлял. Многое зависит от температуры.

Давайте посмотрим на спектр поглощения атомарного водорода: в оптический диапазон попадают линии только бальмеровской серии. Но как эти кванты поглощаются? При переходах только со второго уровня вверх. Но в нормальном (холодном) состоянии все электроны «сидят» на первом уровне, а на втором почти ничего нет. Значит, нам надо нагреть водород, чтобы какая-то доля электронов запрыгнула на второй уровень (потом они снова вернутся вниз, но перед этим какое-то время там проведут) — и тогда пролетающий оптический квант может быть поглощен электроном со второго уровня, что проявится в видимом спектре.

Рис. 11.18. Для каждой спектральной линии существует температура, при которой она имеет наибольшую интенсивность.

Итак, холодный водород не будет выдавать бальмеровскую серию, а теплый — будет. А если мы еще сильнее нагреем водород? Тогда много электронов «запрыгнет» на третий и более высокие уровни, а второй уровень снова обеднеет. Очень горячий водород тоже не даст спектральных линий, которые можно увидеть в оптическом диапазоне. Если пройтись от холодных звезд к самым горячим, то мы увидим, что линии любого элемента могут быть достаточно хорошо представлены в спектре лишь в узком диапазоне температур.

Когда астрофизики это поняли, им пришлось переставить спектральные классы в порядке роста температуры: от холодных звезд к горячим. Эта классификация по традиции тоже называется гарвардской, но она уже естественная, физическая. У звезд спектрального класса A температура поверхности около 10 000 K, водородные линии максимально яркие, а с ростом температуры они начинают исчезать, потому что атом водорода при температуре больше 20 000 K ионизуется. Аналогично обстоит дело с другими химическими элементами. Кстати, в спектрах звезд холоднее 4000 K присутствуют не только линии отдельных химических элементов, но и полосы, соответствующие устойчивым при таких температурах молекулам сложных веществ (например, оксидов титана и железа).

Получившуюся при упорядочивании классов по температуре последовательность букв OBAFGKM студентам-астрономам довольно просто запомнить, тем более что придуманы всякие мнемонические поговорки. Самая известная на английском — «Oh, Be A Fine Girl, Kiss Me!» Диапазон температур поверхности таков: у самых горячих звезд — десятки тысяч градусов, у самых холодных — две с небольшим тысячи (рис. 11.19). Для более тонкой классификации каждый класс разделили на десять подклассов и к каждой букве справа приписали одну цифру от 0 до 11.

Рис. 11.19. Типичные спектры звезд ряда спектральных подклассов, характеризующихся температурой поверхности.

Замечу, что оптические спектры фотографируют в цвете только для красоты, а для научных исследований это бессмысленно, поэтому обычно делают черно-белые изображения.

Редко, но бывает, что звезды демонстрируют линии не поглощения (темные на ярком фоне), а излучения (яркие на темном фоне). Их происхождение уже не так легко понять, хотя это тоже довольно элементарно. В начале лекции мы видели, что разреженное облачко горячего газа дает нам линии излучения. Когда мы смотрим на звезду с линиями излучения в спектре, мы понимаем, что источником этих линий служит разреженный, полупрозрачный газ, находящийся на периферии звезды, в ее атмосфере. То есть это звезды с протяженной горячей атмосферой, которая прозрачна в континууме (в промежутках между линиями), а значит, почти ничего в нем не излучает (закон Кирхгофа). Но она непрозрачна в отдельных спектральных линиях, а раз непрозрачна в них, то и сильно в них излучает.

Рис. 11.20. Схема Гарвардской классификации звезд.

На сегодняшний день гарвардская классификация звездных спектров расширена. В нее добавлены новые классы, соответствующие горячим звездам с протяженной атмосферой, ядрам планетарных туманностей и новых звезд, а также недавно открытым довольно холодным объектам, занимающим промежуточное положение между нормальными звездами и крупнейшими планетами; их называют «коричневыми карликами» или «бурыми карликами» (англ. brown dwarf).

Рис. 11.21. Химический состав Солнца по массе.

Есть еще ответвления от некоторых классов для звезд с оригинальным химическим составом. Это, кстати, загадка для нас: до сих пор неясно, почему у некоторых звезд вдруг наблюдается избыток какого-то редкого химического элемента. Ведь химический состав звездных атмосфер, несмотря на разнообразие спектров, очень схож: Солнце и подобные ему звезды на 98 % по массе состоят из первых двух химических элементов — водорода и гелия, а все остальные элементы представлены лишь двумя оставшимися процентами массы.

Солнце — самый яркий для нас источник света, его спектр мы можем растянуть очень сильно, различить в нем десятки тысяч спектральных линий и расшифровать их. Так, установлено, что на Солнце присутствуют все элементы таблицы Менделеева. Однако открою вам секрет: до сих пор примерно 20 линий солнечного спектра, очень слабых, остались неидентифицированными. Так что даже с Солнцем проблема распознавания химического состава еще не решена до конца.

Рис. 11.22. Распределение химических элементов в атмосфере Солнца.

Распределение химических элементов в атмосфере Солнца обладает рядом интересных закономерностей (рис. 11.22). Считается, что это типичный состав звездного вещества. И для большинства звезд это верно. Начиная с углерода и до самых тяжелых ядер (по крайней мере до урана) идет довольно ровный спад распространенности элементов

1 ... 62 63 64 65 66 ... 75 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Астрономия. Популярные лекции - Владимир Георгиевич Сурдин, относящееся к жанру Науки о космосе / Прочая научная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)