Астрономия. Популярные лекции - Владимир Георгиевич Сурдин
Рис. 3.4. Так будет меняться со временем высота привязанного к Земле спутника на орбите, близкой к геостационарной (rg).
Так что идея космического лифта может быть прекрасно реализована. Осталось только найти материал для каната, чтобы 36-тысячекилометровый трос выдерживал свой вес плюс вес поднимаемого груза (железо для этого не годится, а вот наноуглеродные трубки могут быть перспективными: плотность их меньше, а прочность больше), — и тогда каждому человеку можно будет подняться на геостационарную орбиту за несколько тысяч рублей; по деньгам это все равно что слетать в соседний город на самолете. И это сразу изменит нашу космонавтику.
Рис. 3.5. Одна из многочисленных художественных иллюстраций, демонстрирующих возможную конструкцию космического лифта.
К другим мирам
Итак, чтобы оторваться от поверхности Земли и выйти в околоземное пространство, надо набрать первую космическую скорость. Следующая задача космонавтики — улететь от планеты. Для этого необходимо достичь скорости, которая называется второй космической (обозначается V2 , или VP , или V∞ , или VII). Чтобы рассчитать эту величину, используем закон сохранения энергии: кинетическую энергию тела приравниваем к гравитационной энергии его связи с планетой и находим отсюда значение второй космической скорости:
Как видим, она всего лишь в √2 раз больше первой космической, т. е. у поверхности Земли немногим превышает 11 км/с.
Кинетическая энергия — величина скалярная, она не зависит от того, куда направлен вектор скорости, т. е., полетев в любую сторону с такой начальной скоростью, мы покинем планету по параболической траектории.
Рис. 3.6. Вторая космическая скорость.
Если мы уже на околоземной орбите, а нам надо привести корабль на Марс или на более дальнюю планету, мы его просто «пинаем», т. е. добавляем ему такой импульс, чтобы корабль с круговой орбиты Земли вокруг Солнца вышел на эллиптическую орбиту, в апоцентре которой коснулся бы орбиты планеты назначения. Если мы правильно рассчитали время старта, планета приходит в ту же точку одновременно с нашим аппаратом (рис. 3.7). Но встречаются они с разными скоростями: планета движется быстрее, и если ничего не предпринять, то космический корабль тут же отстанет от нее. Значит, надо еще раз включить двигатели и уравнять скорость. Таким образом, надо придать всего два импульса — и вы оказались у соседней планеты. Такая траектория между планетами называется полуэллипсом Гомана — Цандера (по именам инженеров, рассчитавших эту орбиту).
Рис. 3.7. Полуэллипс Гомана — Цандера. Показаны точки приложения импульсов.
Рис. 3.8. Траектория перелета Штернфельда. Чтобы долететь с земной орбиты до орбиты вокруг дальней планеты, достаточно в нужные моменты сообщить кораблю три правильных импульса.
Казалось бы, эта простая классическая орбита должна быть энергетически оптимальной, т. е. наилучшей с точки зрения того, как меньше топлива потратить и при этом подальше улететь. Но — удивительное дело — оказалось, что есть более экономичные орбиты. Открыл их Ари Штернфельд, который увидел, что иногда выгоднее совершить трехимпульсный перелет: сначала улететь дальше той орбиты, куда собираемся попасть, затем еще немного добавить и спуститься к ней и потом уже уравнять скорость (рис. 3.8). Траектория, несомненно, более сложная. Но в сумме эти три импульса (а значит, и затраты топлива) иногда оказываются меньше, чем те два для простой полуэллиптической орбиты. Орбиты Штернфельда лучше, чем полуэллипсы Гомана — Цандера, лишь при большом отношении радиусов орбит планет старта и цели. Для большинства межпланетных перелетов в Солнечной системе они не годятся, но оказываются экономичными для полетов на Луну с околоземной орбиты и для «падения» с земной орбиты в околосолнечную область. Это удивительное открытие в небесной механике Штернфельд сделал, сидя у себя дома: это вообще был очень интересный человек и гениальный космический инженер.
Орбиты спутников
Рассуждения об эллиптической орбите спутников хороши, но природа на самом деле устроена сложнее: та же Земля — не идеальный шар, а сплюснутый, т. е. эллипсоид вращения. Из-за этого сила гравитации вблизи Земли обратно пропорциональна отнюдь не r2, а более сложной зависимости от r. Значит, если мы запустили спутник на полярную орбиту (проходящую над Южным и Северным полюсами), то в таком силовом поле, как мы уже видели в предыдущей лекции, эллипс орбиты постепенно поворачивается: происходит прецессия его оси вокруг центра тяготения (рис. 3.9).
Рис. 3.9. Из-за сплюснутой формы Земли полярная орбита спутника отличается от эллиптической.
Если орбитальная плоскость расположена под косым углом к экваториальной плоскости Земли, то реальные траектории спутников получаются намного более сложными. Россия обычно запускает спутники на орбиту со средним наклоном к экватору около 60° (например, спутник телевизионного вещания «Молния»). При этом сама орбитальная плоскость тоже прецессирует, т. е. поворачивается вокруг земной оси. Для точного расчета их орбиты приходится отказываться от теорем Ньютона и все время учитывать неидеальную форму планеты.
Рис. 3.10. Слева — орбита ИСЗ «Молния» (спутник связи). Наклон плоскости орбиты к экватору — около 63°. При таком наклоне отсутствует поворот линии апсид, поэтому спутник на высокоэллиптической орбите всегда «висит» над одним полушарием Земли (в данном случае — над северным). Орбитальная плоскость поворачивается вокруг полярной оси. Справа — орбита типичного ИСЗ. Расстояния между витками на рисунках увеличены для наглядности.
Движение двойных звезд
Законы небесной механики описывают движение не только планет и их спутников. Задача двух тел также может быть применена к двойным звездам, которых на небе очень много, больше, чем одиночных. Солнце среди них является скорее исключением. Ближайшая к нам звезда, Альфа Кентавра, тоже двойная.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Астрономия. Популярные лекции - Владимир Георгиевич Сурдин, относящееся к жанру Науки о космосе / Прочая научная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


