Валерий Чолаков - Нобелевские премии. Ученые и открытия
Эти опыты были поставлены в Кембриджском университете, где существовала крупная школа физиологов. После первой мировой войны туда вернулся из госпиталя молодой исследователь, который приступил к изучению нервных путей с помощью самой совершенной техники того времени. Эдгар Дуглас Эдриан, используя электронные усилительные лампы, которые обеспечивали тысячекратное усиление сигнала, смог уловить импульсы единичных нервных волокон — отростков нейрона. Он получил интересные данные о характере и распределении импульсов, которые впоследствии оказались очень ценными при изучении механизма возникновения биоэлектрического импульса.
Эдриан достиг больших успехов в исследовании проводящих путей нервных импульсов, особенно органов, чувств. За свои работы он был удостоен Нобелевской премии по физиологии и медицине. Вместе с ним был награжден. один из ветеранов нейрофизиологии — Чарлз Скотт Шеррингтон, исследовавший нейронный механизм рефлексов. Оба ученых получили премию за исследование функции нейронов. Эту проблему они рассматривали с разных сторон, взаимно дополняя результаты друг друга.
Технические усовершенствования обеспечили возможность более глубокого изучения функций нервов — проводников биоэлектричества. После работ Германа Гельмгольца, который в конце прошлого века измерял скорость прохождения нервного импульса, в нашем столетии исследования этого рода продолжали бурно развиваться. Густав Йотлин установил, что толстые волокна проводят импульсы с большей скоростью. Эдриан открыл, что импульсы выделяются сериями, причем их частота повышается с увеличением силы раздражения. Это наводило на мысль, что нервы, подобно кабелям, состоят из пучков волокон-проводников. Джозефу Эрлангеру и Герберту Спенсеру Гассеру выпало счастье первыми установить сложную структуру нерва. В 1920 г. на конгрессе инженеров в Чикаго, демонстрировались новые радиолампы-усилители и усовершенствованные электронные осциллографы, которые спустя два десятилетия после их изобретения Карлом Фердинандом Брауном достигли довольно высокого уровня. Записав с помощью этой техники нервные импульсы с весьма высокой точностью, Эрлангер и Гассер пришли в 1924 г. к выводу, что их сложный характер можно довольно легко объяснить, если принять, что сам нерв состоит из нескольких типов волокон, проводящих электрические импульсы с разной скоростью. Эти двое американских ученых, работавшие в известном Институте Джорджа Вашингтона в Сент-Луисе (шт. Миссури), установили наличие трех типов волокон, которые были обозначены первыми тремя буквами латинского алфавита. Наиболее толстые волокна типа А проводят импульсы со скоростью 5—100 м/с, волокна типа В — со скоростью 3—14 м/с и волокна типа С — со скоростью 0,3—3 м/с.
Эрлангер и Гассер сумели доказать, что отдельные волокна, входящие в состав нерва, служат различным целям. Толстые волокна, передающие импульсы с высокой скоростью, несут команду для быстрого действия мышц. Более тонким волокнам, по которым передается информация от органов чувств, столь высокая скорость не нужна. С наименьшей скоростью переносят импульсы нервные нити, проводящие, например, чувство боли. Это разнообразие — результат миллионов лет эволюции, в ходе которой выживали только существа, наиболее быстро приспосабливающиеся к окружающим условиям.
В 1944 г., когда вторая мировая война подходила к концу, комитет при Каролинском институте возобновил свою деятельность, тогда-то премия по физиологии и медицине была присуждена Эрлангеру и Гассеру за открытие высокодифференцированных функций единичных нервных волокон. Работы этих ученых явились крупным шагом вперед в развитии нейрофизиологии — науки, исследующей нервные структуры во взаимосвязи с их функциями.
К 50-м годам были получены наконец результаты, которые бесспорно показывали, как проводится нервный импульс. Еще Дюбуа-Реймон высказывал предположение, что биотоки обусловлены ориентацией молекул в живой клетке. После этого некоторые ученые связывали работу нерва с различными биохимическими процессами в его протоплазме. Постепенно, однако, выяснялось, что нервный импульс связан с мембранными явлениями. Известный физико-химик Вильгельм Фридрих Оствальд еще в 1890 г. высказал мысль, что возникновение электрических зарядов обусловлено различием в проницаемости ионов. В 1902 г. Юлиус Бернштейн, продемонстрировав замечательную интуицию и глубокое понимание проблемы, разработал первую мембранную теорию, которая объясняла появление нервного импульса различием в концентрации ионов на внутренней и внешней сторонах мембраны и изменением ее проницаемости. Эта теория была довольно умозрительной, но время показало, что в принципе она верна. В 1904 г. Эрнест Овертон внес важное уточнение в теорию, предложив механизм образования мембранного потенциала. Он выдвинул гипотезу, что электрический заряд возникает в результате различия концентрации ионов натрия и калия с разных сторон мембраны нервной клетки. Прошло почти полвека, прежде чем эта гипотеза стала научным фактом. В ее утверждение внесли вклад многие исследователи, среди которых особо следует выделить Алана Ллойда Ходжкина и Андру Филлинга Хаксли.
Их успех в значительной степени был обеспечен удачным выбором объекта для исследования. В 1938 г. Ходжкин находился в командировке в известной Морской лаборатории в Вудсхолле (шт. Массачусетс), где познакомился с работой К. Коула и Г. Дж. Кёртиса, которые изучали прохождение нервных импульсов по гигантским аксонам кальмаров. Это необыкновенные нервные волокна: их диаметр достигает 1 мм. Такие крупные размеры волокон обусловлены необходимостью быстрого прохождения импульсов, так как кальмары, сепии и осьминоги — активные, быстро плавающие хищники. Поверхность нервного волокна возрастает пропорционально квадрату линейного увеличения диаметра, и это повышает возможность прохождения импульса. У человека и других позвоночных животных проблема высокой скорости передачи нервных импульсов решена технически более элегантно: их нервные волокна обвиты изолирующей миелиновой оболочкой (из мякотных нервных волокон), причем мембрана нервов открыта в так называемые перехваты Ранвье. Импульс проходит только в тех участках, где нет изоляции, и распространяется не по всей длине нерва, а движется по нему скачкообразно, одновременно с этим происходит усиление импульса.
Подобная структура выглядит значительно более совершенной, но также очень трудна для исследования. Счастливое открытие зоолога Дж. Йонга, который в 1936 г. установил, что огромные аксоны кальмаров вполне можно исследовать невооруженным глазом, предоставило нейрофизиологам замечательный объект для исследований. Ходжкин и Хаксли с помощью различных экспериментов подтвердили гипотезу Овертона. Один из таких опытов, задуманный П. Бейкером и Т. Шоу и проведенный ими вместе с Ходжкином в 1961 г., наилучшим образом иллюстрирует мембранную теорию.
Они взяли аксон кальмара и выдавили его из протоплазмы. После этого вводили в нервное волокно различные растворы и проверяли, как концентрация ионов сказывается на передаче нервного импульса. Было установлено, что мембранный потенциал зависит от концентрации калия и натрия снаружи и внутри нервного волокна. В плазме аксона концентрация ионов калия в 20—50 раз больше, чем в межклеточной среде, где преобладают ионы натрия и хлора. Это обусловлено тем обстоятельством, что мембрана свободно пропускает калий, но очень слабо — натрий. При возбуждении, когда проходит импульс, мембрана становится проницаемой и для натрия. В состоянии покоя на разных сторонах мембраны накапливаются электрические заряды разных знаков, что и обусловливает возникновение его мембранного потенциала. При возбуждении происходит деполяризация: проникновение ионов натрия в нервную клетку нейтрализует потенциал, а затем приводит к инверсии зарядов. В состоянии покоя внутренняя сторона клеточной мембраны заряжена отрицательно по отношению к внешней, а в момент возбуждения — положительно.
После того как импульс проходит, вступает в действие мембранный ферментативный комплекс, так называемый «натриевый насос», который восстанавливает исходное состояние нервной клетки и подготавливает ее для следующего импульса. Это занимает несколько миллисекунд, и поэтому импульсы не могут следовать друг за другом непрерывно. Мембранная теория Ходжкина и Хаксли, описывающая процессы генерации и передачи нервных импульсов, явилась крупным достижением физиологии XX в. Основные подтверждения в ее пользу были получены в 50-е годы, а в 1963 г. А. Ходжкину и А. Хаксли вместе с Джоном Эклсом была присуждена Нобелевская премия по физиологии и медицине. (Интересно отметить, что Аидру Хаксли — внук известного естествоиспытателя Томаса Хаксли, одного из соратников Дарвина, брат крупного биолога Джулиана Сорелла Хаксли и писателя Олдоса Хаксли.)
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Валерий Чолаков - Нобелевские премии. Ученые и открытия, относящееся к жанру Научпоп. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

