Пространство, время и движение. Величайшие идеи Вселенной - Кэрролл Шон


Пространство, время и движение. Величайшие идеи Вселенной читать книгу онлайн
Ученые знают о том, как устроены наш мир, Вселенная, но знания эти чаще всего выражаются в виде формул, которые кажутся нам беспорядочным нагромождением букв и символов. Благодаря Шону Кэрроллу вы увидите в них вдохновляющую поэзию, взлетите в небеса, окрыленные ею, чтобы смотреть на чудесную многомерную страну — искривленное пространство-время, — в которой живут сияющие гиганты и действуют могучие силы. Высшая математика, словно веками полировавшийся алмаз, сама по себе достойна не меньшего восхищения, чем «Мона Лиза». Это язык, на котором написаны научные поэмы о черных дырах.
Книга написана в традициях легендарных лекций Ричарда Фейнмана, которые тот прочел шестьдесят лет назад. Это ослепительно яркий прожектор, помогающий людям из самых разных культур и поколений по-новому посмотреть на окружающий мир.
Шон Кэрролл, как никто другой, может объяснить самые трудные для понимания концепции, приоткрыть завесу, столь долго скрывавшую самые важные конструкции современной науки. Он обладает особым талантом излагать сложнейшие понятия в увлекательной форме, доходчиво доводить до читателя фундаментальные идеи, лежащие в основе реальной физики.
Пусть F(x) — интеграл некоей функции f(x), то есть:

(A.1)
Это и есть неопределенный интеграл. На самом деле мы упускаем здесь одну важную вещь. Поскольку начальная и конечная точки не указаны, мы не можем получить точное значение интеграла. Поэтому, строго говоря, мы должны были бы добавить к этому выражению произвольную постоянную С (то есть написать «F(x) + C»)[31]. Однако часто этот факт считается очевидным для читателя, и произвольная постоянная опускается. В большинстве случаев в этой книге под словами «интеграл функции» понимается именно неопределенный интеграл.
Для определенных интегралов начальная и конечная точки указываются начальная под знаком, а конечная — над ним:

(A.2)
Таким образом, определенный интеграл — это разность между значениями неопределенного интеграла в конечной и начальной точках. Давайте посмотрим, как это работает.
Постоянные функции
Рассмотрим очень простую функцию, а именно постоянную: f(x) = c. Тут особенно не о чем говорить, но с чего-то же надо начать. У постоянной функции наклон отсутствует, а значит, производная, без всяких сомнений, равна нулю:

(A.3)
Неопределенный интеграл будет пропорционален x:

(A.4)
Это означает, что определенный интеграл будет пропорционален расстоянию между начальной и конечной точками:

(A.5)
В этом легко убедиться, посмотрев на следующий рисунок. Здесь c = 2, a = 1, а b = 3. Площадь под кривой составляет 2 × (3–1) = 4, чего и следовало ожидать.

В формуле (A.5) скобки показывают, что число c умножается на разность b — a, а не то, что b — a — аргумент функции с, как x в выражении f(x). Обозначения одинаковы, но смысл разный. Предполагается, что читатель понимает его из контекста.
Линейные комбинации
В математике суммы, похожие на af(x) + bg(x), где a и b — константы, называются линейными комбинациями функций f(x) и g(x). При этом слово «линейная» означает, что каждая из функций входит в выражение только один раз и только в первой степени. Умножение и возведение в другие степени — операции нелинейные.
Интегрирование и дифференцирование — линейные операции, то есть производная линейной комбинации равна линейной комбинации производных. То же самое касается и интегралов. Для производных имеем:

(A.6)
Для интегралов:

(A.7)
То же самое (разумеется) происходит и в случаях, когда второго слагаемого нет, то есть мы ищем производную либо интеграл от af(x). В таких случаях мы «выносим константу за знак производной (или интеграла)». А так как мы интегрируем по x (на что указывает обозначение dx), мы можем считать константой все, что не зависит от x, даже если речь идет о функциях других переменных: ∫f(x)g(y)dx = g(y)∫f(x)dx.
Произведения
Поговорим о произведении двух функций, f(x)g(x). Мы будем опускать (x) и писать fg: так будет понятней. В таких случаях используется простая, но не слишком интуитивная формула:

(A.8)
То есть у нас «сумма произведения первой функции на производную второй и произведения второй функции на производную первой». Это так называемое правило Лейбница (про которого мы уже не раз говорили).
Именно потому, что есть вот такая симпатичная формула, математики и считают взятие производных «легким» процессом. Почти все интересующие нас функции можно представить (может быть, рекурсивно) в виде суммы или произведения других функций. Правило Лейбница подразумевает, что производные большинства функций могут быть в явном виде выражены через другие функции (или, как мы говорим, «в замкнутой форме»).
Казалось бы, по аналогии с производными должна существовать столь же красивая формула для интегралов. Но, к сожалению, это не так. Интегрировать трудно и в теории, и на практике.
Степени
Переходя от общих принципов к конкретным функциям, мы часто сталкиваемся с переменной x, возведенной в степень a: xa. При этом переменная называется основанием, а число а — показателем степени. (Эти функции следует отличать от экспонент, где какая-то постоянная возводится в степень переменной. Мы поговорим о них позже.) Если a — целое положительное число, то xa равно x, умноженному само на себя а раз. Но есть математические правила, при помощи которых можно возвести x в любую степень: хоть в дробную, хоть в отрицательную, хоть в комплексную.
Два полезных свойства степеней: при перемножении степеней одной и той же переменной показатели степени складываются, при возведении переменной в какой-то в степени в другую степень — перемножаются.
x ax b = x a+b, (x a)b = x ab. (A.9)
Рассмотрим несколько простых (и, вероятно, знакомых) примеров. Функция x2 называется параболой.

Эта функция никогда не принимает отрицательных значений, поскольку при умножении двух отрицательных чисел (в данному случае двух — x) получается положительное число. То же самое происходит при возведении x в любую четную степень. Графики таких функций будут похожи на параболу. Если же возводить x в нечетную степень, отрицательная сторона функции будет отрицательная, как на графике функции x3.

Переменную можно возвести и в дробную степень, хотя при этом мы ограничены только неотрицательными значениями x. Можно сказать, что возведение в степень 1/a отменяет его возведение в степень a, так как при этом показатели степени складываются:

(A.10)
В результате график функции — это лежащая на боку парабола.

Чтобы понять, что происходит с числом при возведении в отрицательную степень, рассмотрим произведение числа в первой и минус первой степенях.
x · x –1 = x 1–1 = x 0 = 1. (A.11)
Тогда понятно, что x–1 = 1/x. Такая функция называется обратной. Ее график имеет разрыв при x = 0, но мы не должны этого бояться. Мы говорим, что в этой точке функция 1/x не определена.

Производная степени — сама простота: показатель степени без изменений опускается вниз, а из исходного показателя вычитается единица: