Владимир Бердников - Эволюция и прогресс
Гибридологический анализ количественных признаков
Допустим, мы имеем дело с двумя изогенными линиями Р1 и Р2, принадлежащими одному виду. Несмотря на одинаковые условия среды, их средние значения могут сильно различаться, особенно если линии выделены из географически удаленных популяций. Мы исходим из того, что число генов в геномах сравниваемых линий одинаково, поэтому наследственные различия между ними вызваны разным набором аллелей одних и тех же локусов. Представим себе чисто условно, что в генотипе линии Р1 (с маленьким значением признака) собраны «слабые» аллели, которые будем обозначать строчными буквами, а в генотипе линии Р2 (с большим значением признака) — «сильные» аллели, для их обозначения будем применять прописные буквы.
Пусть разница средних значений признака двух изогенных линий обусловлена отличием в силе аллелей только одного локуса. Тогда генотип линии Р1 обозначим аа, а генотип линии Р2 — АА. Примем еще одно упрощающее условие: пусть по степени доминирования оба аллеля (а и А) равны (h = 0,5). Теперь введем представление об эффекте аллельного замещения. Будем считать, что замещение одного слабого аллеля на сильный увеличивает генотипическое значение признака на α единиц. Тогда замещение обоих слабых аллелей на сильные увеличит это значение на 2α единиц. Вспомним, что генотипическое значение признака равно его среднему значению у особей с одинаковым генотипом, т. е.
(4.6)
символ < > означает среднее значение признака в линии.
Проведя массовые скрещивания особей таких линий, получим популяцию гибридов F1:
Все особи популяции F1 имеют один и тот же генотип аА, поэтому изменчивость признака в данном случае обусловлена исключительно средой. Будем считать, что средовая дисперсия для всех популяций (F1, P1 и Р2) одинакова и равна σe2. Среднее значение признака у особей F1 (обозначим его т) должно равняться генотипическому значению гетерозигот аА, т. е. оно должно на α единиц превосходить среднее значение особей линии P1 и настолько же уступать среднему значению особей Р2. Иными словами, m попадает точно в середину интервала между средними значениями признака обеих родительских популяций. Тогда средние значения признака всех рассмотренных популяций можно представить как
<F1> = m; <Р1> = m — а; <Р2> = m + а. (4.7)
Итак, m, m — а и m + а — генотипические значения признака у особей с генетической конституцией аА, аа и АА соответственно.
Перейдем к популяции F2, возникшей или при самооплодотворении, или при панмиктическом скрещивании особей из F1:
Из этой схемы видно, что вся совокупность особей F2 разбивается на три генотипических класса; каждый из них можно охарактеризовать его долей в выборке и средним значением признака. Одна четверть особей имеет генотип аа, другая четверть — генотип АА и половина — генотип аА. Поскольку средние значения признака у особей с этими генотипами равны соответственно m — а, m + а и m, то по (4.3) и (4.4) легко рассчитать среднее значение (М) и дисперсию (σg2) для распределения особей по генотипическим классам:
(4.8)
(4.9)
Таким образом, популяция F2 обладает дисперсией (а2/2), обусловленной различием особей по генотипу. Кроме того, из-за «шума» среды популяция обладает и средовой дисперсией σe2. Этот шум не сдвигает средних значений, поэтому <F2> = m. Эффекты среды и генотипа независимы, отсюда следует, что дисперсия по признаку в поколении F2 должна быть больше средовой на положительную величину а2/2, т. е.
(4.10)
Теперь попробуем рассмотреть более общий случай, когда особи двух изогенных линий различаются аллелями n несцепленных локусов. По-прежнему будем считать, что все слабые аллели собраны у линии P1, а все сильные — у линии Р2. Проведем их скрещивание:
При оценке среднего значения популяции F1 сделаем два предположения: во-первых, по степени доминирования все аллели равны и, во-вторых, замещение в каждом локусе одного слабого аллеля на сильный увеличивает генотипическое значение признака на одну и ту же величину а. Следовательно, разность средних значений родительских популяций должна быть равна 2na, а среднее значение признака в популяции F, (обозначим его <F1>) будет находиться в точке m, т. е. точно посередине между средними значениями родительских линий. Такая модель, где вклады всех аллелей в величину признака суммируются, получила название аддитивной. Главным основанием для ее применения является попадание среднего значения признака в популяциях F1 и F2 посередине между средними значениями родительских популяций. Итак, для случая n локусов
<F1> = m; <P1> = m — na; <Р2> = m + na. (4.11)
Так как генотип всех особей F1 одинаков, то изменчивость признака в этой популяции обусловлена только влиянием среды, и ее дисперсия равна σe2.
Теперь перейдем к популяции F2, представляющей собой смесь огромного числа (3n) генотипов. Формулу генотипа каждой особи можно записать как ряд из n аллельных пар со случайной комбинацией сильных и слабых аллелей в каждой паре. Поскольку аллельный состав каждого локуса формируется независимо от остальных, то генотипическая дисперсия популяции F2 должна представлять собой сумму дисперсий, каждая из которых отражает варьирование у разных особей числа сильных аллелей в каком-то одном локусе. Напомним, что в данной, аддитивной, модели замещение в любом локусе слабого аллеля на сильный ведет к увеличению генотипического значения признака на одну и ту же величину а. Отсюда следует (см. (4.9)), что каждый из n локусов вносит в генотипическую дисперсию поколения F2 один и тот же вклад а2/2. Итак, величину фенотипической дисперсии σ2 в популяции F2 можно передать формулой
σ2 = σe2 + na2/2. (4.12)
Это равенство вместе с другим
<Р2> — <Р1> = 2na (4.13)
образует систему двух независимых уравнений, позволяющих определить величину п:
(4.14)
Хотя эта знаменитая формула Кастла — Райта верна лишь в рамках аддитивной модели, она дает возможность ориентировочно подойти к числу генетических факторов, ответственных за межлинейную разницу величины признака.
Что нам дал этот гибридологический экскурс? Очень много. Хотя природные популяции — это не поколение F2 но и здесь генотипическое значение признака можно считать суммой n независимо варьирующих слагаемых, где n — число локусов в генофонде популяции. Только в отличие от F2 число аллелей каждого локуса в данном случае может быть больше двух, и в пары они соединяются не в отношении 1:2:1, а по закону Харди — Вайнберга. Хотя мы ничего не знаем ни об эффектах этих аллелей, ни о степени их доминирования, ясно одно: популяционная дисперсия признака должна расти с увеличением числа локусов, принимающих участие в его формировании.
Сигма
Очень часто в качестве меры фенотипической изменчивости используют квадратный корень из дисперсии — так называемое среднеквадратичное отклонение (σ). Для экономии места будем именовать эту величину сигмой, по названию греческой буквы, обычно используемой для ее обозначения. Измеряемая в единицах величины самого признака, сигма очень удобна как масштаб для оценки отклонения величины признака от среднепопуляционного значения. Если признак имеет нормальное распределение, то доля особей с отклонением в пределах одной сигмы составляет 68 %, двух сигм — 95 и трех сигм — 99,7 %. В связи с этим полный размах изменчивости признака, распределенного по нормальному закону, попадает в интервал ±3σ (закон трех сигм). В сигмах принято измерять разность средних значений сравниваемых распределений и, в частности, эффект аллельных замещений.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Владимир Бердников - Эволюция и прогресс, относящееся к жанру Научпоп. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

