Читать книги » Книги » Научные и научно-популярные книги » Научпоп » Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий

Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий

Читать книгу Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий, Коллектив авторов . Жанр: Научпоп.
Коллектив авторов - Популярная библиотека химических элементов. Книга первая. Водород — палладий
Название: Популярная библиотека химических элементов. Книга первая. Водород — палладий
ISBN: нет данных
Год: -
Дата добавления: 15 февраль 2019
Количество просмотров: 226
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Популярная библиотека химических элементов. Книга первая. Водород — палладий читать книгу онлайн

Популярная библиотека химических элементов. Книга первая. Водород — палладий - читать онлайн , автор Коллектив авторов
«Популярная библиотека химических элементов» содержит сведения обо всех элементах, известных человечеству. Сегодня их 107, причем некоторые получены искусственно.Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лить в XVIII веке. Третьи открыты 100—200 лет назад, но лишь в наше время приобрели первостепенную важность. Это уран, алюминий, бор, литий, бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую — обо всех остальных.
Перейти на страницу:

КТО ЖЕ ОБИДЕЛ БАЛАРА? Из одной популярной книги в другую кочует утверждение, что огорченный тем, что в открытии брома никому неизвестный Антуан Балар опередил самого Юстуса Либиха, Либих воскликнул, что, дескать, не Балар открыл бром, а бром открыл Балара. (Было это утверждение и в первых изданиях «Популярной библиотеки химических элементов»). Однако это неправда или, точнее, не совсем правда. Фраза то была, но принадлежала она не Ю. Либиху, а Шарлю Жерару, который очень хотел, чтобы кафедру химии в Сорбонне занял Огюст Лоран, а не избранный на должность профессора А. Балар.

КРИПТОН

Впервые криптоном был назван газ, выделенный Уильямом Рамзаем из минерала клевеита. Но очень скоро пришлось это имя снять и элемент «закрыть». Английский спектроскопист Уильям Крукс установил, что газ не что иное, как уже известный по солнечному спектру гелий. Спустя три года, в 1898 г., название «криптон» вновь появилось, его присвоили новому элементу, новому благородному газу.

Открыл его опять же Рамзай, и почти случайно — «шел в дверь, попал в другую». Намереваясь выделить гелий из жидкого воздуха, ученый вначале пошел было по ложному следу: он пытался обнаружить гелий в высококипящих фракциях воздуха. Разумеется, гелия, самого низко- кипящего из всех газов, там не могло быть, и Рамзай его не нашел. Зато он увидел в спектре тяжелых фракций желтую и зеленую линии в тех местах, где подобных следов не оставлял ни один из известных элементов.

Так был открыт криптон, элемент, имя которого в переводе с греческого значит «скрытный». Название несколько неожиданное для элемента, который сам шел в руки исследователя.

Родословная криптона

Известно, что гелий, радон, почти весь аргон и, вероятно, неон нашей планеты имеют радиогенное происхождение, т. е. они — продукты радиоактивного распада. А как обстоит дело с криптоном?

Среди известных природных ядерных процессов, порождающих криптон, наибольший интерес представляет самопроизвольное деление ядер урана и тория.

В 1939 г. Г. Н. Флеров и К. А. Петржак установили, что в природе (очень редко) происходит самопроизвольное расщепление ядер урана-238 на два осколка примерно равной массы. Еще реже таким же образом делятся ядра 232Th и 235U. Осколки — это атомы изотопов средней части периодической системы элементов. Будучи неустойчивыми («перегруженными» нейтронами), эти осколки проходят по цепи последовательных бета-распадов. Среди конечных продуктов распада есть и стабильные тяжелые изотопы криптона.

Подсчеты, однако, показывают, что радиоактивный распад (включая деление урана-235 медленными нейтронами) — не главный «изготовитель» криптона. За время существования Земли (если считать его равным 4,5 млрд. лет) эти процессы смогли выработать не более двух-трех десятых процента существующего на нашей планете элемента № 36. Откуда в таком случае основная его масса?

Сегодня на этот вопрос даются два обоснованных, но разных по смыслу ответа.

Часть ученых считает, что земной криптон возник в недрах планеты. Прародителями криптона были трансурановые элементы, некогда существовавшие на Земле, но теперь уже «вымершие». Следы их существования усматривают в том, что в земной коре есть элементы-долгожители нептуниевого радиоактивного ряда (ныне целиком искусственно воссозданного). Другой подобный след — микроколичества плутония и нептуния в земных минералах, хотя они могут быть и продуктами облучения урана космическими нейтронами.

В пользу этой гипотезы говорит тот факт, что искусственно полученные актиноиды (не все, но многие) — активные «генераторы» криптона. Их ядра самопроизвольно делятся намного чаще, чем ядра атомов урана. Сравните периоды полураспада по спонтанному делению: 8,04∙1015 лет — для урана-238 и всего 2000 лет — для калифорния-246. А для фермия и менделевия соответствующие периоды полураспада измеряются всего лишь часами.

Иного мнения придерживается другая группа ученых. На их взгляд, земной криптон (как и ксенон) пришел на Землю из Вселенной, в процессе зарождения Земли. Он присутствовал еще в протопланетном облаке, его сорбировала первичная земная материя, откуда ой потом, при разогреве планеты, выделился в атмосферу.

Это мнение тоже опирается на факты. В его пользу говорит, в частности, то, что криптон — газ тяжелый, малолетучий и относительно легко конденсирующийся (в отличие от иных компонентов первичной атмосферы) вряд ли смог бы оставить Землю на первых фазах ее формирования.

Кто же прав? Скорее всего, правы обе стороны: криптон нашей планеты, вероятно, представляет собою смесь газов как космического, так и земного происхождения. По данным исследований последних лет, земного намного больше

Что же представляет собой эта смесь?

Глазами физика и химика

Газообразный криптон в 2,87 раза тяжелее воздуха, а жидкий — в 2,14 раза тяжелее воды. Криптон превращается в жидкость при — 153,9°С, а уже при — 156,6°С он отвердевает. Заметим попутно, что малые температурные интервалы между жидким и твердым состояниями характерны для всех благородных газов. Это свидетельствует о слабости сил межмолекулярного взаимодействия, что вполне естественно: у этих атомов «замкнутые», целиком заполненные электронные оболочки. Молекула криптона одноатомна.

Криптон — первый из тяжелых благородных газов. Такое деление не искусственно. Обратите внимание на большой разрыв между значениями критических величин легких и тяжелых благородных газов. У первых они крайне низки, у вторых значительно выше. Так, точки кипения криптона и гелия разнятся, на 116,1°С. Сильно разнятся и другие важнейшие характеристики. Объяснить это логичнее всего характером сил межмолекулярного взаимодействия: с увеличением молекулярного веса благородного газа резко вырастает сила взаимопритяжения молекул.

Криптон — достаточно редкий и рассеянный газ. На Земле его больше всего в атмосфере — 3∙10-4% (по весу). Содержание криптона в атмосфере очень медленно (даже в масштабах геологических эпох) нарастает: криптон «выдыхают» некоторые минералы.

Природный криптон состоит из шести стабильных изотопов: 78Kr, 80Kr, 82Kr, 83ICr, 84Kr и 86Kr. И все они есть в горных породах, природных водах и атмосфере. Обильнее прочих представлен 84Kr, на его долю приходится 56,9% атмосферного криптона.

В ядерных реакциях искусственно получены 18 радиоактивных изотопов криптона с массовыми числами от 72 до 95. Некоторые из этих изотопов нашли применение как радиоактивные индикаторы и генераторы излучения.

Особо важным оказался криптон-85 — почти чистый бета-излучатель с периодом полураспада 10,3 года.

Спектр криптона изобилует линиями во всем видимом диапазоне, особенно в коротковолновой области. Самые яркие линии расположены между 4807 и 5870 Аº, оттого в обычных условиях криптон дает зеленовато-голубое свечение.

Благодаря хорошей растворимости в жидкостях организма криптон при парциальном давлении 3,5 атм уже оказывает наркотическое действие на человека. 

А теперь о химии криптона.

В атоме криптона 36 электронов, распределенных на четырех энергетических уровнях (оболочках). Это обстоятельство в физическом и отчасти химическом смысле приближает криптон к обычным, «нормальным» газам. Почему?

В атомах тяжелых благородных газов внешние электронные оболочки замкнутые. Но будучи сравнительно отдаленными от ядра, оболочки получают некоторую автономность. Чем тяжелее атомы инертного газа, тем больше их способность объединяться с некоторыми другими атомами.

Химия «инертных» газов (теперь без кавычек не обойтись) — новая область науки. Но возникла она не на голом месте. Еще в первой четверти XX в. ученые наблюдали образование в электрическом разряде ионизированных молекул инертных газов и как будто бы соединений этих газов с другими элементами. Вне разряда эти образования быстро распадались, и первые сообщения о соединениях инертных газов казались малообоснованными.

Позже стали известны кристаллические клатратные[18] соединения криптона с H2O, H2S, SO2, галогеноводородами, фенолами, толуолом и другими органическими веществами. Они устойчивы даже при комнатной температуре под давлением 2–4 атм. Но еще в 40-х годах советский ученый Б. А. Никитин показал, что в клатратных соединениях связь молекулярная, в них валентные электроны не взаимодействуют.

В 1933 г. Лайнус Полинг, позже дважды лауреат Нобелевской премии, развивая представление о валентных связях, предсказал возможность существования фторидов криптона и ксенона. Но лишь в 1962 г. было получено первое такое соединение — гексафтороплатинат ксенона. Вслед за тем были синтезированы фториды криптона, ксенона, радона и многочисленные их производные.

Перейти на страницу:
Комментарии (0)