`
Читать книги » Книги » Научные и научно-популярные книги » Математика » Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда

1 ... 5 6 7 8 9 ... 219 ВПЕРЕД
Перейти на страницу:

Глава XI: Мозг и мысль. Тема этой главы — «Как физическая аппаратура мозга может порождать мысли?» Сначала описываются крупномасштабные и мелкомасштабные структуры мозга. Затем выдвигается несколько гипотез об отношении понятий к нейронной деятельности.

Англо-франко-немецко-русская сюита. Интерлюдия, состоящая из трех переводов знаменитого стихотворения «Jabberwocky» Льюиса Кэрролла.

Глава XII: Разум и мысль. Предыдущие стихотворения естественно подводят к вопросу: «Могут ли языки — или даже сам разум разноязычных людей — быть „отображены“ один на другой?» Как вообще возможна коммуникация между мозгами двух разных людей? Что между ними общего? Может ли мозг, в некоем объективном смысле, быть понят другим мозгом? Для возможного ответа используется географическая аналогия.

Ария с различными вариациями. Форма этого Диалога основана на «Гольдберг-вариациях» Баха, а его содержание имеет отношение к теоретико-численным задачам, подобным Гипотезе Гольдбаха. Основная цель этого гибрида — показать, как гибкость теории чисел опирается на тот факт, что поиски в бесконечном пространстве имеют множество вариантов. Некоторые из них оказываются бесконечными, некоторые — конечными, а другие находятся где-то посередке.

Глава XIII: Блуп, Флуп и Глуп. Это названия трех компьютерных языков. Программы Блупа могут осуществлять только предсказуемо конечный поиск, в то время как программы Флупа способны на непредсказуемый или даже бесконечный поиск. В этой главе я стараюсь объяснить понятие примитивно рекурсивных и общерекурсивных функций в теории чисел, поскольку они очень важны для доказательства Теоремы Гёделя.

Ария в ключе G. В этом Диалоге словесно отражена автореферентная конструкция Гёделя. Эта идея принадлежит У. Я. О. Квайну. Диалог служит прототипом следующей главы.

Глава XIV: О формально неразрешимых суждениях ТТЧ и родственных систем. Название этой главы — адаптация заглавия статьи Гёделя 1931 года, где впервые появилась его теорема о неполноте. Тщательно рассматриваются две основные части доказательства. Показано, как из предположения о непротиворечивости ТТЧ вытекает то, что она (или любая похожая система) неполна. Обсуждаются отношения ТТЧ к эвклидовой и неэвклидовой геометрии, и значение теоремы Гёделя для философии математики.

Праздничная кантатата… В которой Ахилл не может убедить скептически настроенную Черепаху в том, что сегодня его день рождения. Его повторные неудачные попытки предвосхищают повторяемость Гёделева аргумента.

Глава XV: Прыжок из системы. Обсуждается повторяемость Гёделева аргумента, из чего вытекает, что ТТЧ не только неполна, но и в принципе непополнима. Анализируется и опровергается интересный аргумент Лукаса, использующего Теорему Гёделя для доказательства того, что человеческая мысль не может быть механизирована.

Благочестивые размышления курильщика табака. В этом Диалоге затрагиваются многие темы, относящиеся к автореферентности и самовоспроизводству. Среди примеров — телевизионные камеры, снимающие сами себя, а также вирусы (и другие подклеточные существа), способные на самосборку. Название Диалога происходит из стихотворения самого Баха, которое цитируется в тексте.

Глава XVI: Авто-реф и Авто-реп. В этой главе обсуждается связь между разными типами автореференции и самовоспроизводящимися объектами (такими, как компьютерные программы или молекулы ДНК). Объясняются отношения между самовоспроизводящимся объектом и внешними механизмами, помогающими этому воспроизводству; особое внимание уделяется отсутствию между ними четкой границы. Тема этой главы — передача информации между различными уровнями подобных систем.

Магнификраб в пирожоре. Это название — игра слов; имеется в виду Баховский «Magnificat в ре-мажоре». Речь идет о Крабе, который, по-видимости, обладает магической способностью различать между истиннными и ложными высказываниями теории чисел. Читая их как музыкальные пьесы, он проигрывает их на флейте и определяет, «красивы» ли они.

Глава XVII: Чёрч, Тюринг, Тарский и другие. Фантастический Краб предыдущего Диалога заменен здесь несколькими реальными людьми с удивительными математическими способностями. Тезис Чёрча-Тюринга, связывающий мозговую деятельность с вычислениями, представлен в нескольких версиях. Все они анализируются с точки зрения их последствий для возможности механического подражания мышлению и программирования на компьютере умения чувствовать и создавать прекрасное. Тема связи мозговой деятельности с вычислениями приводит к таким вопросам как Тюрингова Проблема Остановки или Теорема Истинности Тарского.

ШРДЛУ. Этот Диалог основан на статье Т. Винограда о его программе ШРДЛУ; я изменил только несколько имен. В Диалоге некая компьютерная программа, на довольно впечатляющем языке, беседует с человеком о так называемом «мире кубиков». Кажется, что программа на самом деле понимает тот ограниченный мир, о котором говорит.

Глава XVIII: Искусственный интеллект: краткий обзор. Эта глава начинается с обсуждения знаменитого «теста Тюринга» — предложенного пионером компьютеров Аланом Тюрингом способа определить, «думает» ли машина. Далее мы переходим к краткому обзору истории искусственного интеллекта. Обсуждаются программы, до какой-то степени умеющие играть в различные игры, доказывать теоремы, решать задачи, сочинять музыку, заниматься математикой и пользоваться естественным языком (английским).

Контрафактус. О том, как мы организуем наши мысли, воображая гипотетические варианты реальности. Это умение приобретает иногда странные формы, — как например, в характере Ленивца, этого страстного любителя блинчиков и ненавистника воображаемых ситуаций.

Глава XIX: Искусственный интеллект: виды на будущее. Предыдущий Диалог затрагивает вопрос о том, как информация представлена на различных уровнях контекста. Это приводит к современной идее «фреймов». Для конкретности дан пример того, как зрительные головоломки решаются «методом фреймов». Затем обсуждается важный вопрос взаимодействия понятий вообще, что приводит к разговору о творческих способностях. В заключение дан список моих собственных предположительных «Вопросов и Ответов» на тему ИИ и разума в общем.

Канон Ленивца. Этот Диалог имитирует Баховский канон, в котором один голос повторяет ту же мелодию, что и другой, только «вверх ногами» и вдвое медленнее. Третий голос свободен. Ленивец произносит те же реплики, как и Черепаха, при этом отрицая (с свободном смысле слова) все, что она говорит, и говоря вдвое медленнее. Свободный голос — Ахилл.

Глава XX: Странные Петли или Запутанные Иерархии. Грандиозный водоворот множества идей о иерархических системах и автореферентности. Речь идет о странной «путанице», возникающей, когда система начинает действовать сама на себя, — например, наука, изучающая науку, правительство, исследующее правительственные преступления, искусство, нарушающее законы искусства и, наконец, люди, размышляющие о собственном мозге и разуме. Имеет ли Теорема Гёделя какое-нибудь отношение к этой последней «путанице»? Связаны ли с этой Теоремой свободная воля и самосознание? В заключение Гёдель, Эшер и Бах снова связываются в одно целое.

Шестиголосный ричеркар. Этот Диалог — игра, изобилующая многими идеями, которыми проникнута эта книга. Он является повторением истории «Музыкального приношения», с которой начинается книга. В то же время это «перевод» в слова самой сложной части «Музыкального приношения» — «Шестиголосного ричеркара». Подобная двойственность наделяет «Ричеркар» таким количеством уровней значения, какого нет ни в каком другом Диалоге книги. Фридрих Великий заменен здесь Крабом, фортепиано — компьютерами и так далее. Читателя ожидает множество сюрпризов. В Диалоге снова затрагиваются проблемы разума, сознания, свободной воли, искусственного интеллекта, теста Тюринга и так далее. Он заканчивается косвенной ссылкой на начало книги, таким образом превращая ее в гигантскую автороферентную Петлю, одновременно символизирующую музыку Баха, рисунки Эшера и Теорему Гёделя.

Список иллюстраций

Суперобложка. Триплеты «ГЭБ» и «ЭГБ», подвешенные в пространстве, отбрасывают символические тени на три плоскости, встречающиеся в углу комнаты. (Триплетом я называю блок, сделанный таким образом, что его тени, отброшенные под прямым углом, являются тремя разными буквами. Эта идея родилась у меня внезапно, когда как-то вечером я ломал голову над тем, как лучше символизировать единство Геделя, Эшера и Баха, слив их имена неожиданным образом. Два триплета, показанные на суперобложке, сделаны мной самим. Я выпилил их из красного дерева ручной пилой, используя для отверстий торцевую фрезу; стороны каждого триплета около 10 см длиной.

1 ... 5 6 7 8 9 ... 219 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Даглас Хофштадтер - ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда, относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)