Математика. Поиск истины. - Клайн Морис
В нашем повседневном опыте укоренилось весьма искусственное различие между массой и энергией. Они измеряются в различных единицах, например в граммах и джоулях соответственно, и энергия Eэквивалентна массе, численно равной E/c 2где c 2— скорость света в выбранных единицах. Однако ныне мы яснее, чем когда-либо, понимаем, что масса и энергия — всего лишь два способа измерения одной и той же физической сущности. Если кто и возражает против их отождествления, подчеркивая, что речь идет о разных свойствах, то не следует все же забывать об одном немаловажном обстоятельстве: и масса, и энергий в соотношении E = mc 2отнюдь не свойства, которые мы воспринимаем непосредственно нашими органами чувств, а математические термины, выражающие комбинацию таких свойств, а именно обычной массы и обычной скорости.
Хотя Эйнштейн продолжал размышлять на темы механики, теории электромагнетизма и других областей физики, на его работы в более поздний период сильное влияние оказали идеи Германа Минковского (1864-1909), одного из ведущих профессоров Цюрихского политехникума в период обучения там Эйнштейна. Выступая в 1908 г. с докладом «Пространство и время», Минковский, в частности, сказал:
Воззрения на пространство и время, которые я намерен перед вами развить, возникли на экспериментально-физической основе. В этом их сила. Их тенденция радикальна. Отныне пространство само по себе и время само по себе должны обратиться в функции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность.
([25], с. 181.)Правда, признавал Минковский, мы нашли спасательное убежище в понятии непрерывно текущего времени, независимом от понятия пространства. Однако при наблюдении явлений природы мы воспринимаем время и пространство не порознь, а вместе, одновременно. Более того, время всегда измерялось по пространственным ориентирам, например по расстоянию, проходимому стрелками часов, или по движению маятника в пространстве. Вместе с тем наши методы измерения пространства с необходимостью включают в себя время. Даже при простейшем методе измерения расстояний — с помощью линейки — время безостановочно течет. Следовательно, естественный взгляд на события должен приводить к рассмотрению комбинации пространства и времени; мир представляет собой четырехмерный пространственно-временной континуум.
Известно, что при измерении пространственных и временной компонентов пространственно-временного интервала между двумя событиями различные наблюдатели могут получать разные результаты, но это не удивительно, если рассматривать трехмерное пространство само по себе. Два наблюдателя в различных точках земного шара видят одно и то же трехмерное пространство, но, основываясь на собственном опыте, каждый из них выделяет вертикальное и горизонтальное направления, отличные от вертикального и горизонтального направлений другого наблюдателя. Тем не менее мы продолжаем считать пространство трехмерным, а не рассматривать его как некую искусственную комбинацию протяженности по вертикали и горизонтали. Аналогичным образом различные наблюдатели могут по-разному разлагать пространство-время на пространственную и временную составляющие. Такое разложение столь же реально и необходимо для того, кто его производит, как и различие между горизонтальным и вертикальным направлениями для спускающегося по лестнице. Различие между тем и другим привносим мы, люди, — природа же предъявляет нам пространство и время не порознь, а вместе. В действительности в повседневной жизни мы иногда смешиваем пространство и время. Мы говорим, что звезда находится от нас на расстоянии стольких-то световых лет. Это означает, что звезда находится от нас на расстоянии, которое свет проходит за указанное время. Железнодорожное расписание также представляет собой комбинацию положения в пространстве и времени.
Эйнштейн развил идею Минковского о том, что Вселенную следует рассматривать как четырехмерный пространственно-временной мир, но эти поистине поразительные новшества специальной теории относительности Эйнштейна не позволили разрешить все трудности, перечисленные нами в предыдущей главе. По-прежнему не было никакой ясности относительно того, каким образом гравитация удерживает различные тела на поверхности Земли и планеты на их орбитах или почему в данной точке земного шара отношение массы и веса всегда должно быть постоянно.
Эйнштейн предпринял также попытку распространить специальную теорию относительности на такие системы отсчета, которые движутся относительно друг друга ускоренно.Путеводная нить к более общему варианту теории относительности была найдена в 1907 г., когда Эйнштейн, размышляя над проблемами гравитации, осознал, что так называемая гравитационная масса неотличима от массы инерциальной. Что заставило ученых ввести различие между гравитационной и инерциальной массами? Согласно первому закону Ньютона, изменить состояние движения тела можно, приложив к нему силу. Если масса тела равна m, то, чтобы сообщить ему ускорение a, нужно приложить (по второму закону Ньютона) силу F = ma.Здесь m— инерциальная масса. Если мы стукнем кием по бильярдному шару на столе, приведя шар в движение, то ускоряемая масса есть масса инерциальная. Но если мы возьмем бильярдный шар в руку и выпустим его, то он упадет, поскольку масса Земли притягивает массу шара. В этом падении участвует уже гравитационная масса (вес). Совпадают ли инерциальная и гравитационная массы? Этот вопрос не беспокоил последователей Ньютона, но в связи с совершенно новыми проблемами, касающимися массы даже в специальной теории относительности, не мог не занимать Эйнштейна. И он пришел к следующему выводу: гравитационная масса эквивалентна инерциальной и гравитационная масса есть не что иное, как инерциальная масса в пространстве-времени совершенно нового типа.
Чтобы лучше понять ход рассуждений Эйнштейна, рассмотрим пример: пассажир свободно падающей (например, из-за обрыва троса) кабины лифта. В таком случае пассажир не испытывает действия силы тяжести. Действительно, он не давит на пол кабины и не имеет веса. Если, находясь внутри падающей кабины лифта, пассажир уронит носовой платок или наручные часы, то эти предметы будут падать. Но кабина также падает, поэтому и платок, и часы останутся (относительно кабины) в той точке пространства, где их выпустили. Внутрикабины лифта важна только инерциальная масса. Но для внешнего наблюдателя существует сила тяжести, действующая на кабину и находящиеся внутри нее предметы.
Обобщая, можно сказать, что все наблюдения, производимые локально над системой, на которую действует однородная статическая сила тяжести, будут такими, как если бы система двигалась равноускоренно. Ускорение и сила тяжести эквивалентны. В этом и состоит смысл сформулированного Эйнштейном принципа эквивалентности. Иначе говоря, этот принцип означает, что наблюдатель, падающий в гравитационном поле, будет испытывать то же, что и наблюдатель, находящийся в области пространства, полностью экранированной от гравитационного поля, если он движется с ускорением, равным ускорению свободного падения.
Под влиянием идей Минковского о пространстве-времени, своих собственных размышлений относительно инерциальной и гравитационной масс и побуждаемый желанием распространить специальную теорию относительности на системы отсчета, движущиеся ускоренно, Эйнштейн пришел к идее искривленного пространства-времени. Неоднородность реального гравитационного поля не позволяет заменить его единой ускоренной системой отсчета в большой области пространства. Поэтому Эйнштейн воспользовался идеями Римана и Клиффорда (хотя о последнем он, возможно, не знал), которые полагали, что распределение материи в пространстве-времени может быть учтено в геометрической структуре последнего.
«Увидеть», как выглядит эйнштейновское четырехмерное искривленное пространство-время, мы не в силах, но, воспользовавшись аналогией, все же можем в какой-то степени интуитивно представить его. Рассмотрим форму Земли. Хотя для многих целей вполне достаточно считать, что Земля имеет форму шара, в действительности это не так. На поверхности Земли есть горы, долины, ущелья. Какую форму имеют геодезические, или кратчайшие пути, на такой поверхности, заполненной материей? Ясно, что они изменяются в зависимости от формы поверхности и при переходе от одной области к другой.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Математика. Поиск истины. - Клайн Морис, относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

