Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике.
В рамках трансфинитной арифметики помимо суммы мы можем определить произведение кардинальных чисел. Для этого надо обратиться к так называемому декартову произведению множеств. Если А и В — произвольные множества, их декартово произведение будет записываться как А x В и определяться как множество, образованное всеми парами, первые члены которых являются элементами А, а вторые — В. Как это делается в текстах по теории множеств, пара, образованная, например, числами 1 и 2, обозначается как (1,2). Порядок записи элементов очень важен, поскольку (1,2) — не та же самая пара, что (2,1). Поэтому обычно говорят об упорядоченных парах. Итак, если А — это множество, образованное числами 0 и 1, а В — числами 2,3 и 4, то А х В — это множество, состоящее из пар (0,2), (0,3), (0,4), (1,2), (1,3), (1,4). Обратим внимание на то, что А имеет мощность 2; В — мощность 3, а А х В — мощность 6. Как следствие из предыдущего примера, произведение мощности А на мощность В будет мощностью А x В (в отличие от того, что происходит в случае сложения, здесь не имеет значения, есть ли у А и В общие члены). Чему равно X0 х X0 ? Если мы возьмем множество всех натуральных чисел N (мощность которого, как мы знаем, равна X0 ), то исходя из предыдущего определения X0 ∙ X0 — мощность N x N (множество всех пар натуральных чисел). Далее будет доказано, что N х N счетное.
ДоказательствоЧтобы доказать, что N х N счетное, запишем все составляющие его пары в последовательность. Начнем с единственной пары, дающей в сумме 0, потом пары, сумма которых равна 1, затем — 2 и так далее.
(0,0), (0,1), (1,0), (0,2), (1,1), (2,0), (0,3), (1,2), (2,1), (3,0),...
Эта запись позволяет нам установить взаимно однозначное соответствие между «индивидуальными» натуральными числами и парами натуральных чисел:
Это соответствие доказывает, что N х N счетное, следовательно, его мощность равна X. Итак, с одной стороны, произведение мощностей дает понять, что мощность N x N равна X0 ∙ X0 . С другой стороны, мы только что доказали: мощность N х N равна X0 . Отсюда следует, что X0 ∙ X0 = X0 .
Мы — члены Земли, но не 5, поскольку не являемся планетами Солнечной системы. С точки зрения S каждая планета — самостоятельный объект, и не имеет никакого значения, как он образован. Аналогично, множество D определенное выше, состоит из двух членов, и для него не важно, из чего, в свою очередь, состоят они.
Теперь рассмотрим множества, образованные натуральными числами. Например, множество N, состоящее из всех натуральных чисел, множество четных чисел, нечетных, простых; множество, состоящее только из числа 45; только из тех чисел, которые оканчиваются на 8; состоящее только из чисел 5,7 и 22 и многие другие, каждое из которых, как в случае с Q и I, должно приниматься как самостоятельный объект. Итак, мы можем рассмотреть множество, члены которого — это все множества, могущие быть образованными при помощи натуральных чисел — как упомянутые выше, так и все остальные возможные множества. Это новое множество обычно обозначается 'P(N) и читается как «части N», а его члены, следовательно, — это множества, а не числа. Множество всех четных чисел — член 'P(N), как и множество, состоящее из числа 2; но само число 2 — не член 'P(N), так как его члены — только множества. Здесь для теории множеств проходит тонкое, но очень важное различие: число 2 и множество, состоящее из числа 2, — не одно и то же. Чтобы подчеркнуть это различие, множество из числа 2 обычно записывается как {2}. Фигурные скобки позволяют нам графически показать разницу между 2 — числом — и {2} — множеством. Так же, например, множество, образованное числами 2 и 34, обозначается {2, 34}, а множество четных чисел — {0, 2, 4, 6, 8,...} (см. рисунок). Таким образом, множество D упомянутое выше и состоящее из множеств Q и I, будет записано как {Q и I}.
ОРДИНАЛЬНАЯ АРИФМЕТИКААрифметику кардинальных чисел нельзя путать с арифметикой ординальных. Кардинальные числа связаны с понятием количества, а их сумма — с идеей добавления элементов. Следовательно, как мы только что увидели, X0 + 1 = X0 , то есть X0 + 1 не больше X0 . Ординальные же числа выражают понятие «места в последовательности», и их сумма связана с идеей продвижения по этой последовательности. Так, например, ω + 1 обозначает позицию, идущую непосредственно за ω, и поэтому ω + 1 больше, чем ω. В «Обоснованиях» Кантор также писал и об ординальной арифметике, которая не рассматривается в этой книге.
Некоторые множества, образованные натуральными числами.
ОДИН И НОЛЬВопрос, на который Кантор ответил в своей статье 1892 года, гласит: «Какова мощность 'P(N) ?» Для ответа нужно найти удобный способ представления множеств, образованных натуральными числами. Для определения числового множества достаточно знать, какие числа принадлежат множеству, а какие нет. Представим, что двое, Алиса и Бруно, играют в игру: Алиса загадывает множество, а Бруно должен отгадать его. Для этого он по порядку называет натуральные числа: 0, 1,2, 3, 4,...; каждый раз, когда названное число входит в загаданное множество, Алиса говорит «Да», если нет — «Нет». Если она говорит: «Нет, да, нет, да, нет, да, нет, да,...», Бруно может заключить, что речь идет о множестве нечетных чисел. Если все ее ответы — «Да», то это множество 'P(N) ; если это множество простых чисел, то ответы будут: «Нет, нет, да, да, нет, да, нет, да, нет, нет, нет, да,...». Каждое «Да» мы можем заменить числом 1, а каждое «Нет» — числом 0. Таким образом, каждое множество, состоящее из натуральных чисел, будет являться бесконечной последовательностью нуля и единицы. Если мы перезапишем ответы Алисы, то множество нечетных чисел будет представлено последовательностью 010101..., множество 'P(N) — 11111..., а множество простых чисел — 001101010001... То есть каждой бесконечной последовательности нуля и единицы соответствует некое множество, и наоборот, каждому множеству соответствует бесконечная последовательность нуля и единицы. Это взаимно однозначное соответствие подразумевает, что вопрос о мощности 'P(N) и мощности всех бесконечных последовательностей нуля и единицы — одно и то же (см. рисунок).
В статье 1892 года «Об одном элементарном вопросе учения о многообразиях» Кантор доказывает по существу две вещи. Прежде всего — что множество всех последовательностей нуля и единицы не является счетным, поэтому и 'P(N) несчетно. Для этого ученый использовал диагональный метод (см. главу 2). В действительности данный метод впервые появился именно в этой работе 1892 года. Доказательство несчетности, которое привел Кантор в 1874 году, следовало другой логике и основывалось на определении вещественных чисел.
Доказательство, что 'P(N) несчетное, основывается на алгоритме, описанном в главе 2 для вещественных чисел. Однако несчетность 'P(N) и R, даже если в ходе доказательства мы рассуждали так же, не гарантирует, что у них одинаковая мощность. Метод диагонали дает нам отрицательный результат, то есть позволяет убедиться, что ни у 'P(N), ни у R мощность не равна X0 , но не показывает, какую конкретно мощность имеет каждое из них, и не дает оснований заключить, что их мощности равны.
Взаимнооднозначное соответствие между множествами и последовательностями нуля и единицы.
В статье 1892 года Кантор доказал, что эти множества равномощные, однако это нельзя заключить на основе диагонального метода; необходимо предъявить отдельное доказательство. Итак, требуется доказать, что 'P(N) и R эквивалентны или что R эквивалентно всем бесконечным последовательностям нуля и единицы.
Для начала вспомним, что способ привычной нам записи натуральных чисел основан на десятичной системе, так как для них необходимы все 10 цифр, а также на степенях числа 10. Когда мы записываем число 235, на самом деле мы пишем 2 · 102 + 3 х 101 + 5 · 100 (напомним, что 101 = 10, а 100 = 1). Нечто похожее происходит с числами, которые не являются целыми, но в этом случае используются степени с отрицательным знаком: 10-1 равное 0,1; 10-2, равное 0,01, и так далее. 0,76 на самом деле означает 7 ∙ 101 + 6 ∙ 10-2. Интересно подчеркнуть, что числа с бесконечным количеством цифр после запятой, такие как 0,3333..., можно представить в виде бесконечных сумм.
Действительно, 0,333... = 3 ∙ 10-1 + 3 ∙ 10-2 + 3 ∙ 10-3 + 3 ∙ 10-4 + ... Хотя десятичная запись используется чаще всего, она не единственно возможная: например, числа можно записывать на основе так называемой двоичной системы. Как явствует из ее названия, в ней используются только две цифры — 0 и 1, — а основана она на степенях числа 2. Число 13 в двоичной системе будет записано как 1101, поскольку 13 = 1 ∙ 23 + 1 ∙ 22 + 0 ∙ 21 + 1 ∙ 20. Как и в предыдущем случае, этот способ записи не распространяется на целые числа. Например, в двоичной системе число 0,333... будет выглядеть как 0,01010101..., поскольку бесконечная сумма 0 ∙ 2-1 + 1 ∙ 2-2 + 1 ∙ 2-4 + 0 ∙ 2-5 + 1 ∙ 2-6 в результате даст 0,333... (записанное в десятичной системе).
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Gustavo Pineiro - Бесчисленное поддается подсчету. Кантор. Бесконечность в математике., относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


