Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума
Обратите внимание, с какой частотой в таблицах фигурируют числа 0, 1 и 2:
Почему мы не можем определить операцию округления так, чтобы 0, 1 и 2 распределялись более равномерно? Например, так, чтобы каждое из этих чисел фигурировало в таблице примерно в 33,3 % случаев. Эта ситуация представлена ниже: 0, 1 и 2 в таблице встречаются 33, 34 и 33 раза соответственно:
Расставляем продукты в холодильникеРасположение продуктов в европейских холодильниках можно оптимизировать благодаря стандарту упаковок Gastronorm EN 631. Все упаковки, разработанные в соответствии с этим стандартом, имеют прямоугольную форму и обозначаются числовым кодом, указывающим соотношение размеров упаковки. Перечень кодов представлен ниже:
2/1 2/3 2/4 2/8 и 1/1 1/2 1/3 1/4 1/6 1/9.
Базовая упаковка обозначается кодом 1/1 и имеет размеры 530 х 265 мм.
Остальные упаковки получаются из базовой так, как показано на иллюстрации.
Таким образом, обозначение каждой упаковки выражает отношение ее размера и размера базовой упаковки 1/1:
2/1 = удвоенная упаковка 1/1;
2/4 = четверть 2/1 = половина 1/1;
2/8 = восьмая часть 2/1 = четверть 1/1;
2/3 = две трети 1/1;
1/2 = половина 1/1;
1/3 = треть 1/1;
1/4 = четверть 1/1;
1/6 = половина 1/3;
1/9 = треть 1/3.
Все эти равенства верны с точки зрения математики:
Следовательно, коды стандарта Gastronorm, по сути, представляют собой дроби, четко указывающие соотношение размеров упаковок. Чтобы узнать, скольким упаковкам формата 1/6 равна упаковка формата 2/3, достаточно выполнить деление:
Система Gastronorm подобна игре в тетрис и позволяет заранее рассчитать оптимальное расположение упаковок, например, на полке холодильника, при этом упаковки будут располагаться рядом друг с другом, подобно элементам головоломки.
Бесконечная книга и двумерный дискМногие писатели прошлого и современности очень четко передают математические идеи, объясняют их и сопровождают примерами, что помогает лучше усвоить многие понятия и взглянуть на них по-новому. Чтобы проиллюстрировать это, обратим внимание на два рассказа: один из них принадлежит перу Хорхе Луиса Борхеса, второй — Итало Кальвино.
Большая часть творчества Борхеса посвящена парадоксальным ситуациям и объектам, которые тем не менее настолько логичны, что кажутся реальными: это пустыня, подобная лабиринту, где нет ни дверей, ни проходов, здание библиотеки невероятно сложной планировки и т. д. Описания подобных объектов в произведениях Борхеса содержат отсылки к математическим идеям.
В «Книге песка» этот аргентинский писатель говорит о книге с бесконечным числом страниц, при этом нельзя определить, какая из страниц книги первая, какая — последняя. Можно сказать, что бесконечность, описываемая Борхесом, является потенциальной и счетной, так как все страницы книги пронумерованы натуральными числами. Страниц в книге так много, что ее невозможно открыть еще раз на только что прочитанной странице, — именно так писатель проводит различие между конечным и бесконечным:
«Я наугад раскрыл книгу… Я обратил внимание, что на четной странице стояло число, скажем, 40514, а на следующей, нечетной, — 999. Я перевернул ее — число было восьмизначным. На этой странице была маленькая, как в словарях, картинка: якорь, нарисованный пером, словно неловкой детской рукою.
И тогда незнакомец сказал:
— Рассмотрите хорошенько, вам больше никогда ее не увидеть.
В словах, а не в тоне, звучало предостережение.
Я заметил страницу и захлопнул книгу. И тут же открыл ее. Напрасно я искал, страница за страницей, изображение якоря…
<…>
— …Ее владелец не умел читать… Он объяснил мне, что его книга называется Книгой Песка, потому что она, как и песок, без начала и конца»[2].
Если бы книга была конечной, то как бы много страниц в ней ни было (например, N), вероятность снова открыть ее на определенной странице была бы небольшой, но не нулевой. В бесконечной книге эта вероятность равна нулю:
Страницы «Книги песка» вполне могли быть пронумерованы натуральными числами: 1, 2, 3, … При такой нумерации книгу нельзя было бы открыть на последней странице, но можно было бы открыть на первой, однако в рассказе говорится, что у книги нет ни начала, ни конца. В попытках найти начало или конец книги герою все время попадались новые и новые страницы:
«Он попросил меня найти первую страницу. Я положил левую руку на титульный лист и плотно сомкнутыми пальцами попытался раскрыть книгу.
Ничего не выходило, между рукой и титульным листом всякий раз оказывалось несколько страниц. Казалось, они вырастали из книги.
— Теперь найдите конец.
Опять неудача; я едва смог пробормотать:
— Этого не может быть.
<…>
— Не может быть, но так есть. Число страниц в этой книге бесконечно.
Первой страницы нет, нет и последней. Не знаю, почему они пронумерованы так произвольно. Возможно, чтобы дать представление о том, что члены бесконечного ряда могут иметь любой номер. <…> Если пространство бесконечно, мы пребываем в какой-то точке пространства. Если время бесконечно, мы пребываем в какой-то точке времени»[3].
Так как в книге нет первой страницы, наша гипотеза о натуральных числах ошибочна. На каком множестве чисел отсутствует первый элемент? На множестве положительных рациональных чисел, то есть на множестве конечных или периодических десятичных дробей. Это множество не только бесконечное и счетное (его элементы можно сосчитать), но на нем также нет первого и последнего числа, ведь первого положительного рационального числа после нуля не существует. Если бы это число, назовем его А, существовало, то мы всегда могли бы разделить его пополам и получить A/2 — положительное рациональное число, меньшее А:
0 < А/2 < A
Первым рациональным числом должно быть A/2. Но это вновь неверно, так как A/4 еще меньше, А/8 — еще меньше. Таким образом, между данным рациональным числом (обозначающим первую страницу «Книги песка») и нулем (обозначающим обложку книги) может уместиться бесконечно много рациональных чисел (страниц книги). Мы можем пронумеровать страницы книги рациональными числами, заключенными между 0 и 1. Но у нее не будет ни первой страницы, ни последней.
Что хотел сказать Борхес, когда написал, что мы находимся в одной из точек бесконечного пространства и времени? Возможно, что мы не можем увидеть его концов или пределов. Если бы пространство и время были конечными, можно было бы вести речь о половинах, третях, соотношениях и расстояниях от концов, но если пространство и время бесконечны, эти рассуждения теряют смысл.
То, что Борхес четко представлял себе бесконечность и ее связь с различными измерениями пространства, становится очевидным уже в начале рассказа: «Линия состоит из множества точек, плоскость — из бесконечного множества линий; книга — из бесконечного множества плоскостей; сверхкнига — из бесконечного множества книг…»[4]
* * *
ХОРХЕ ЛУИС БОРХЕС (1899–1986)
Хорхе Луис Борхес — один из самых выдающихся писателей XX века. Его произведения сложно привязать к какому-то конкретному жанру: их в равной степени можно отнести к рассказам, эссе, поэзии и фантастике. Фантазия Борхеса не лишена логики. В его рассказах содержатся прекрасные и доступные описания научных и математических идей, понятные широкой публике. К подобным произведениям относятся «Вавилонская библиотека», «Фунес памятливый», «Аналитический язык Джона Уилкинса» и «Сад расходящихся тропок». Некоторые считают, что в последней Борхес предвосхитил некоторые открытия квантовой механики.
На реверсе аргентинской монеты достоинством в 2 песо, выпущенной в 1999 году в честь столетия со дня рождения Хорхе Луиса Борхеса, изображен лабиринт, упоминаемый во многих произведениях писателя.
* * *
В еще одном его произведении главную роль играют не числа, а измерения.
«Диск» — это короткий рассказ, в котором алчный дровосек убивает зашедшего к нему путника, после чего много лет ищет оброненный его жертвой магический диск — диск Одина, у которого всего одна сторона:
«— Я иду путями изгнанника, но я король, ибо у меня есть диск. Показать тебе его?
Он разжал костлявый кулак. В нем ничего не было. Ладонь была пуста.
Только сейчас я вспомнил, что до этого он не разжимал его ни разу.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Микель Альберти - Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума, относящееся к жанру Математика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


