`
Читать книги » Книги » Научные и научно-популярные книги » История » Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив

Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив

1 ... 11 12 13 14 15 ... 21 ВПЕРЕД
Перейти на страницу:

Систему (22)—(23) — как и любые другие — удобно решать путем эквивалентных преобразований. Достаточно вычесть из уравнения (22) уравнение (23). Получим уравнение

0,02х = 0,04                                                                                                      (24)

не содержащее уже переменной у, которое вместе с уравнением (23) образует систему

Х + У = 1                                                                                                            (25)

0,02х = 0,04                                                                                                       (26)

Система (25)—(26) эквивалентна исходной системе (22)—(23), но решается гораздо проще: из (26) сразу следует х = 2, а подставив х = 2 в (25), получим у — — 1. Отметим, что тем же путем последовательного исключения переменных путем эквивалентных преобразований решают (следуя методу Гаусса) и системы, состоящие из большого числа уравнений. Просто число необходимых преобразований и вычислений очень быстро растет с ростом числа уравнений в системе, и поэтому для решения больших систем, часто встречающихся при проектировании, требуются компьютеры.

А теперь рассмотрим самое важное: решения х = 2, у = — 1 системы (22)—(23) верны, но на самом деле для практического использования не пригодны. Действительно, достаточно всего одному из коэффициентов системы (например, коэффициенту 1,02 при х) измениться менее, чем на 1%, от значения 1,02 перейти к значению 1,01, и изменившаяся система, принявшая теперь вид

1,01х + у = 1,041                                                                                (27)

х + у = 1

имеет решения х = 4, у = -3. Таким образом, изменение всего одного коэффициента менее, чем на одну сотую приводит к изменению решений вдвое и втрое. Поскольку в практических задачах исходные данные известны часто с точностью меньшей, чем одна сотая, то решения системы (22)—(23) для практики не пригодны. Их некритическое использование может привести к авариям и катастрофам.

Но ничего этого нельзя заметить при исследовании системы (25)—(26), которая эквивалентна исходной системе (22)—(23) и получена из нее путем эквивалентных преобразований. Система (25)—(26) мало чувствительна к малым изменениям своих коэффициентов.

Если каждый из них изменится на ± 0,01 то решения изменятся не более, чем на ± 4 %, а совсем не вдвое и втрое.

Таким образом, простая система (22)—(23) иллюстрирует главный и наиболее важный вывод: эквивалентные преобразования, широко (и часто некритично) применяемые при расчетах, не меняя самих решений как таковых, могут изменять многие важные свойства решений и, в частности — могут изменять их чувствительность к неизбежным на практике малым неточностям исходных данных, которые почти всегда получаются из опыта или измерения и поэтому имеют ограниченную точность.

Данному явлению можно дать и вполне наглядную иллюстрацию: уравнения (22)—(23) — это уравнения прямых на плоскости с осями 0x и , а решения х = 2, у = — 1 — это координаты точки их пересечения. На рис. 1 показаны прямые, соответствующие уравнениям (22)—(23). Эти прямые пересекаются в точке X — 2, у ——1 под очень острым углом. Именно поэтому координаты их точки пересечения очень чувствительны к изменениям коэффициентов уравнений (22)—(23).

На рис. 2 показаны прямые, соответствующие уравнениям системы (25)—(26), которая, как уже говорилось, эквивалентна исходной системе (22)—(23). Мы убеждаемся, что точка пересечения прямых, как и должно быть, осталась прежней х = 2, у = —1, но угол между прямыми стал совсем другим, гораздо менее острым, и поэтому высокая чувствительность решений к малым неточностям в исходных данных кажется исчезнувшей.

Конечно, в простейшей системе из двух уравнений все ясно, но уже в системах из 5—7, а тем более из многих десятков уравнений уже совсем не ясно, к каким погрешностям решений приведет погрешность исходных данных, например, на ±1 %. Поэтому отсутствие во многих пакетах прикладных программ оценок погрешностей решений систем уравнений в зависимости от погрешностей исходных данных является недостатком, который может быть источником ошибок в расчетах, а значит — порожденных этими ошибками аварий и катастроф.

5. Для решения ряда практических задач используют, как известно, интегральные уравнения, и некоторые пакеты прикладных программ снабжены программами их решения. Методы решения интегральных уравнений были рассмотрены профессором В. С. Сизиковым в монографии [3], где им были обнаружены недостатки традиционных методов и программ, связанные с тем, что применяемые при решении эквивалентные преобразования интегральных уравнений в ряде случаев изменяют корректность решаемой задачи и тем самым приводят к ошибкам.

В монографии [3] описаны найденные В. С. Сизиковым усовершенствованные методы решения интегральных уравнений, позволяющие восстановить достоверность компьютерных вычислений решений интегральных уравнений. Эти методы применены в монографии [3] к правильной реконструкции смазанных и дефокусированных изображений, в т. ч. изображений медицинских объектов, полученных методами рентгеновской и ядерномагнитно-резонансной томографии.

Изложенные пять пунктов не исчерпывают всех примеров необходимости совершенствования методов вычислений, связанных с открытием в Санкт-Петербургском государственном университете новых свойств эквивалентных преобразований. Поскольку эквивалентные преобразования очень широко используются в математике и в самых различных областях инженерных расчетов, то нет сомнений в том, что в дальнейшем будут открыты новые возможности уточнения методов расчета и проектирования, еще более уменьшающие вероятность техногенных аварий и катастроф.

Наука может очень много сделать для обеспечения безопасности человеческой жизни. Нужно только шире использовать ее рекомендации. Но вот с использованием рекомендаций и предостережений науки дело обстоит далеко не просто. В последней, третьей части книги будет рассказано об очень непростой борьбе за безопасность в авиации — борьбе, которую вели сотрудники Санкт-Петербургского и Балтийского технического государственных университетов.

ЧАСТЬ III

§ 13. Борьба за безопасность авиапассажиров и за предотвращение авиационных катастроф

В настоящей третьей части книги дается более подробный рассказ — с документами и материалами переписки — о борьбе Балтийского государственного технического университета (БГТУ) и Санкт-Петербургского государственного университета (СПбГУ) за безопасность авиапассажиров и о нежелании Федерального государственного унитарного предприятия (ФГУП) «Пулково» и Госавианадзора эту безопасность обеспечивать. Об этом уже было кратко рассказано в §8 («Бездействие властей»), а теперь читатель может ознакомиться с документами, с ответами (и отписками!) должностных лиц. Читатель убедится, что в сегодняшних условиях борьба за безопасность в авиации (как и в других областях техники) является далеко не простым делом. Читатель увидит, как готовятся техногенные катастрофы и кто их готовит.

Читатель еще раз убедится — опасна не сама техника как таковая. Опасны люди, отвечающие за безопасность техники, люди, наделенными правами по обеспечению безопасности, но упорно не желающие использовать свои права и выполнять свои обязанности.

К сожалению, не все 100% документов сохранились, но и оставшиеся достаточно красноречивы. Началось все с того, что научные сотрудники и преподаватели Балтийского государственного технического университета (БГТУ «Военмех) ознакомились с опубликованными работами Санкт-Петербургского государственного университета о неполноте традиционных методов технических расчетов, изучили их и убедились в необходимости проверить техническую документацию эксплуатируемых в России самолетов, выявить «особые» системы, опасные своими малыми запасами устойчивости и дать рекомендации по исправлению этих систем и обеспечению безопасности авиапассажиров. В «Военмехе» была образована инициативная рабочая группа — под руководством известного профессора Валерия Тимофеевича Шароватого, которая еще в 2004 году была готова приступить к проверке технической документации. Как уже говорилось ранее, главной трудностью была проверка обширной документации многочисленных самолетных систем. Если опасные «особые» системы выявлены и указаны, то обеспечить безопасность не трудно, внести небольшие изменения в конструкции легко могут уполномоченные на то организации, но вот методикой выявления опасных «особых» авиационных систем (и особенно — систем автоматического управления, САУ) владеет только БГТУ «Военмех». Специалистам «Военмеха» было хорошо известно, что в военной авиации многократно происходили аварии и катастрофы — в том числе и с гибелью летчиков — и что вероятной причиной значительной части этих аварий были «особые» системы, у которых по традиционным методам расчета формально все хорошо, а реальные, настоящие запасы устойчивости малы, поэтому они быстро исчерпываются в ходе эксплуатации самолета и неизбежно ведут к авариям. Однако начинать с военной авиации специалисты «Военмеха» считали бесполезным, поскольку там все засекречено и почти любая авария списывается на «человеческий фактор», на ошибки летчика — особенно если пилот погиб и возразить не может. Поэтому специалисты СПбГУ и БГТУ «Военмех» решили прежде всего обеспечить безопасность пассажиров гражданского воздушного транспорта и обратились в Северо-Западное окружное межрегиональное территориальное управление воздушного транспорта (Северо-Западное ОМТУ ВТМТ России, бывший Госавианадзор, которому через некоторое время вернули его прежнее название), основной задачей которого является обеспечение безопасности полетов самолетов и безопасности пассажиров. Специалисты управления с пониманием отнеслись к представленным БГТУ «Военмех» и СПбГУ документам, доказывающим опасность невыявленных «особых» систем, и подготовили на подпись руководства письмо в Федеральное государственное унитарное предприятие (ФГУП) «Пулково» с требованием — принять инициативную группу «Военмеха» и обеспечить ее работу по проверке технической документации эксплуатируемых в «Пулково» самолетов для выявления опасных «особых» систем. Однако руководство Управления заменило слово «требуем», подготовленное его специалистами, на ни к чему не обязывающее слово «рекомендуем» и заверило БГТУ «Военмех», что этого достаточно и рабочую группу «Пулково» примет (смотри документ № 1 от 19.01.05).

1 ... 11 12 13 14 15 ... 21 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Юрий Петров - Расследование и предупреждение техногенных катастроф. Научный детектив, относящееся к жанру История. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)