`
Читать книги » Книги » Научные и научно-популярные книги » География » Коллектив авторов - Строение и история развития литосферы

Коллектив авторов - Строение и история развития литосферы

Перейти на страницу:

Средняя квадратичная погрешность сводной карты графиков АМП в районе съемки 2007 г. с учетом результатов предшествующих исследований составила ±4,6 нТл.

Интенсивность АМП на хребте Ломоносова в целом понижена. Генеральное простирание магнитных аномалий в целом подчиняется простиранию хребта, но упорядоченности поля не наблюдается. Амплитуда, ширина, а также градиенты аномалий существенно меняются как вкрест, так и вдоль поднятия. Структура магнитного поля в зоне сочленения хребта Ломоносова с прилегающим шельфом контролируется геодинамической обстановкой на его флангах. Со стороны котловины Амундсена наблюдаются высокоинтенсивные аномалии, типичные для участков пассивных окраин, где установлены проявления вулканизма. С противоположного фланга, граничащего с котловиной Подводников, а также с континентальным шельфом Восточно-Сибирского моря, наблюдается низкоамплитудное слабоградиентное поле без резких изменений структуры аномалий, что свойственно, в частности, внутриплатформенным осадочным бассейнам.

Средняя квадратичная погрешность аэрогравиметрической съемки после введения всех поправок и увязки маршрутов составила ±1.5 мГал.

Измеренное поле оказалось весьма изрезанным. Средний градиент поля составляет ≈0.7 мГал/км при максимальных значениях до 4 мГал/км. Сравнение полученного поля с гридом аномалий силы тяжести, созданным в рамках международного Арктического гравиметрического проекта АркГП (http://earth-infonima.mil/GrandG/wgs84/agp/index.html) показало его большую детальность и лучшую корреляцию с рельефом.

Результаты сопоставления показали высокую эффективность современных аэрогравиметрических исследований и позволили использовать обновленную модель поля силы тяжести в качестве наиболее достоверной информации при интерпретации.

Карта аномалий поля силы тяжести в редукции в свободном воздухе на всю площадь исследований, представленная на рис. 10, позволила выявить главные особенности гравитационного поля исследуемого региона, провести его районирование, а также уточнить конфигурацию отдельных аномалий и геоструктур. В частности, уточнена конфигурация краевой гравитационной аномалии, отделяющей глубоководную часть арктической акватории от шельфов морей Лаптевых и Восточно-Сибирского. Уточнены границы хребта Ломоносова – на новой карте он выражен отчетливой линейной морфоструктурой. При подходе к шельфу моря Лаптевых хребет распадается на два отрога. От котловин Амундсена и Подводников он отделен системой отрицательных линейных аномалий, которые, в соответствии с сейсмическими данными, связаны с прогибами.

Рис. 10. Фрагмент сводной карты аномалий силы тяжести в редукции в свободном воздухе Северного Ледовитого океана в области его сочленения с шельфом Восточно-Арктических морей.

На картах аномалий Буге, рассчитанных посредством 3-D гравитационного моделирования, хребет Ломоносова характеризуется пониженной интенсивностью по сравнению с прилегающими абиссальными котловинами. Наиболее контрастно в аномалиях Буге отмечаются границы блоков разного тектонического происхождения.

По результатам аэрогеофизических съемок 2007 года с привлечением данных по прилегающим акваториям Евразийского и Амеразийского суббассейнов были составлены схемы районирования и выполнено гравитационное моделирование вдоль осевой зоны площади аэрогеофизических исследований с опорой на сейсмические наблюдения МОВ и ГСЗ.

Плотности выделенных на сейсмическом разрезе слоев земной коры были определены по их скоростным характеристикам согласно эмпирической зависимости скорость-плотность (Красовский 1981; Nafe, Drake, 1967).

Моделирование проводилось по аномалиям поля силы тяжести, составленным из двух наборов данных – наледные гравиметрические измерения и результаты аэрогравиметрических исследований.

Положение глубинных сейсмических границ М и К1, определенных наиболее надежно методом ГСЗ, в плотностной модели осталось неизменным. В соответствии с коротковолновыми особенностями поля силы тяжести были выделены некоторые воздымания и опускания в рельефе акустического фундамента, не противоречащие сейсмическим данным.

В слое верхней части консолидированной коры хребта Ломоносова по гравиметрическим данным выделены два блока, имеющие различные плотностные свойства в пределах геометрии сейсмических границ. Границы блоков соответствуют пикетам 310–350 км и 420–470 км. Соответствие модельной и наблюденной аномалий было достигнуто за счет незначительного уменьшения плотности земной коры в выделенных блоках до 2.74 г/ см3 (рис. 11).

Рис. 11. Геолого-геофизическая модель земной коры по профилю ГСЗ «Арктика-2007»

Помимо этого в области, соответствующей зоне перехода континент – океан, а также хребту Ломоносова, плотность мантии понижена до 3.26 г/см3, по сравнению с континентальным шельфом (ПК 0–230 км). В сейсмической модели эта область характеризуется пониженными скоростными характеристиками мантии (до 7.8 км/с).

При составлении геофизической модели по профилю «Арктика-2007» дополнительно привлекались аэромагнитные данные, по которым вычислялось положение верхних кромок магнитоактивных источников (рис. 11).

Практически все верхние кромки магнитоактивных источников расположены в толще консолидированных осадков или вблизи ее кровли.

В целом, подобранная сейсмоплотностная модель не противоречит сейсмическим данным, подтверждая геометрию сейсмических границ, определенных по результатам интерпретации данных ГСЗ и МОВ.

3. Глубинная геолого-геофизическая модель земной коры хребта Ломоносова и зоны его сочленения с шельфом морей Лаптевых и Восточно-Сибирского

Зона сочленения хребта Ломоносова с Лаптевоморско – Восточно-Сибирским шельфом в рамках исследуемой площади включает в себя: шельф, южную часть хребта Ломоносова и примыкающие к нему части днищ котловины Амундсена и впадины Подводников.

Шельф отделен от глубоководного бассейна бровкой, ниже которой развит континентальный склон, представленный сочетанием поверхностей разной крутизны, которые сильно расчленены сетью подводных каньонов. Континентальный склон к западу и к востоку от хребта Ломоносова имеет существенные отличия. На западном борту хребта континентальный склон имеет максимальную на рассматриваемой площади крутизну (высота свыше 3 500 м), распространяется до абиссальных глубин и имеет плавный переход к абиссали котловины Амундсена. Континентальный склон восточного борта характеризуется меньшей крутизной (высота около 2500 м) и более резким характером границы между склоном и днищем впадины Подводников.

Изучение вещественного состава донных отложений южной части хребта Ломоносова базируется на данных лабораторного изучения грунтовых колонок, полученных в рейсе АЛ «Россия» в 2007 г.

Осадки, слагающие дно в пределах описываемого района, принадлежат единой толще рыхлых отложений, мощностью не менее 60–70 м, характеризующейся по данным сейсмоакустических исследований, однородной волновой картиной. Весь сейсмоакустический разрез представлен параллельно-слоистой акустической толщей без видимых несогласий и нарушений, что позволяет достаточно уверенно предположить непрерывный характер осадконакопления.

Верхняя часть толщи, вскрытая грунтовыми трубками, представлена преимущественно алевро-пелитами, в минералогическом отношении сложенными обломками кварца, полевых шпатов, слюд, сильно измененных неопределимых минералов. Тяжелая фракция на 40–50 % представлена роговой обманкой и минералами группы эпидота-цоизита; разнообразные акцессории составляют доли или единицы процента.

В составе донно-каменного материала можно выделить две группы образований. Своеобразный «региональный» фон составляют продукты ледового разноса – гравийно-галечный материал средней и хорошей окатанности, часто со следами нахождения в прибойной зоне, представленный темноцветными однородными алевролитами, аргиллитами и песчаниками.

Одновременно в разрезах грунтовых трубок и дночерпателей почти постоянно присутствуют остроугольные обломки пород и минералов, имеющие, по (Кабаньков и др., 2004; 2008), эдафогенное происхождение. Количество обломков достигает 100–150 и более на пробоотборник; их преобладающий размер – щебнисто-дресвяный и псефито-псаммитовый.

Петрографическое изучение поднятых обломков позволило сгруппировать их в пять самостоятельных комплексов пород:

– гнейсы, кристаллические сланцы, гранитоиды, кварциты, филлиты, аналогичные комплексам докембрийского кристаллического фундамента;

– кварцевые песчаники и алевролиты, отвечающие осадочным породам зрелой платформы. По данным U-Pb локального анализа детритных цирконов, выделенных из кварцевого алевролита, поднятого на станции АЛР-18С, возраст исходных пород не моложе 1000 млн. лет. Судя по резко преобладающим среди цирконов зерен с возрастом в интервале 1.7–1.9 млрд. лет, можно предположить, что породы рассматриваемого комплекса образовались в основном за счет размыва карельского кристаллического фундамента. По литолого-петрографическим характеристикам породы аналогичны кварцевым песчаникам, драгированным в южной части поднятия Менделеева и относимым к рифею (Кабаньков, Андреева, 2008);

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Коллектив авторов - Строение и история развития литосферы, относящееся к жанру География. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)