Читать книги » Книги » Научные и научно-популярные книги » Физика » Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей

Читать книгу Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей, Семихатов Алексей . Жанр: Физика.
Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей
Название: Сто лет недосказанности: Квантовая механика для всех в 25 эссе
Дата добавления: 27 декабрь 2024
Количество просмотров: 376
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Сто лет недосказанности: Квантовая механика для всех в 25 эссе читать книгу онлайн

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - читать онлайн , автор Семихатов Алексей

Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.

На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.

Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.

 

Особенности

26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.

Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.

 

Для кого

Для тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.

Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.

1 ... 55 56 57 58 59 ... 61 ВПЕРЕД
Перейти на страницу:

Фундаментальные поля в некотором роде присутствуют во Вселенной постоянно, во всяком случае в виде своего вакуумного состояния, где никаких квантов/частиц нет. Вакуум представляет собой «пустоту» в смысле отсутствия всяких возбуждений, но это и физическое явление – состояние поля без квантов, из которого, однако, могут родиться кванты при поступлении необходимой энергии.

Ключевая составляющая Стандартной модели – взаимодействие полей. Оно выражается в обмене энергией, импульсом и другими сохраняющимися физическими величинами (например, электрическим зарядом): сколько прибавилось у одного поля, столько же отнялось у другого. Не все поля способны к таким обменам со всеми другими, и вопрос о том, какие именно участвуют в каких взаимодействиях, – это вопрос про устройство доставшейся нам Вселенной: ответ надо извлекать из наблюдений{113}.

Подробности взаимодействия полей удается довольно наглядно выразить на языке их квантов, которые несут и передают друг другу энергию, импульс и другие величины. Элементарные акты взаимодействия выглядят как рождение и/или поглощение одних квантов другими. Например, все многообразие электромагнитных взаимодействий складывается из многократного комбинирования нескольких таких элементарных актов: электрон (или позитрон) испускает или поглощает фотон; пара электрон – позитрон превращается в фотон, или происходит обратный процесс{114}.

Наш мир, таким образом, составлен не только из элементарных объектов, но и из элементарных актов с их участием. Каждый акт испускания, поглощения или превращения квантов – элементарный в том самом прямом смысле, что ни через что другое не объясняется. Когда электрон испускает фотон, этот фотон не содержался ранее «внутри» электрона; он просто рождается, забирая себе часть энергии и импульса электрона; когда нестабильная элементарная частица мюон «распадается» на электрон и два (анти)нейтрино, три новые частицы тоже рождаются, распределяя между собой энергию, импульс и заряд исчезнувшего мюона{115}.

Кванты полей до некоторой степени являются их «представителями»: поля часто характеризуют по свойствам их квантов, главные из которых – масса, заряд(ы) и спин. Последний сейчас потребует нашего внимания из-за своей особой роли: он, оказывается, отвечает за характер массового поведения.

Спин кванта – это число, выражающее его «степень раскрутки», один из атрибутов вращения (глава 7). Числа, отвечающие за степень раскрутки, собственно, и называются спином, и они бывают только целыми (0, 1, 2) или полуцелыми (1/2, 3/2). Фотоны, например, несут спин 1, а электроны и позитроны – спин 1/2. Для квантов спин определяет доступное им внутреннее разнообразие, а в терминах поля спин связан с количеством его компонент: в общем, чем больше спин, тем их больше, хотя простого единого правила тут нет{116}.

Спин играет определяющую роль в устройстве Вселенной, потому что кванты любого поля с целым спином – бозоны, а с полуцелым – фермионы. Это опытный факт, но, знаменательным образом, одновременно и содержание теоремы, которую доказал Паули. Как мы видели в предыдущей главе, бозоны и фермионы определяются тем, как волновая функция одинаковых частиц откликается на их перестановку: если возникает лишний знак, то перед нами фермионы, а если нет, то бозоны. Для фермионов отсюда получается уже обсуждавшийся принцип запрета (сформулированный тем же Паули, но задолго до теоремы) – нетерпимость к себе подобным. А для бозонов, наоборот, определенная склонность к коллективизму: чем больше частиц уже находится в одном состоянии, тем охотнее (с большей вероятностью) к ним присоединяется еще одна. Теорема Паули привязывает характер массового поведения к спину.

Доказательство теоремы опирается на некоторые предположения: одно относится к математическим пространствам, связанным с квантовыми полями, в другом заявляется согласованность со специальной теорией относительности; кроме того, имеется условие положительности энергии. Это важное условие: при наличии состояний с отрицательной энергией частицы не смогли бы противостоять искушению разрушить мир, переходя в них{117}. Теорему можно поэтому понимать примерно так: для того чтобы мир был устроен в целом нормально, волновая функция частиц с полуцелым спином должна приобретать лишний минус при перестановке{118}.

Роли, которые играют бозоны и фермионы, в природе разделены. Все частицы/поля, служащие переносчиками взаимодействия («курьерами») – это коллективисты-бозоны. А «отправители» и «получатели», из которых сложена материя, – фермионы. Такое положение дел не предписано квантовой теорией поля напрямую, но оно имеет место в этой Вселенной. К фермионам относятся кварки и электроны (из которых сложено все вокруг нас и мы сами), более массивные родственники электронов – мюоны и тау, – а также нейтрино; фермионами по необходимости получаются и составленные из трех кварков протоны и нейтроны.

Сложенный из фермионов мир оказывается разнообразным из-за принципа Паули, который не позволяет фермионам, собранным вместе, находиться в одном и том же квантовом состоянии. Электроны в атомах не могут устраиваться в состояниях с более низкими энергиями, если те уже заняты другими электронами, а вынуждены селиться все «выше» по энергии, и поэтому по мере движения по клеткам таблицы Менделеева элементы демонстрируют меняющиеся химические свойства. Кое в чем похожая картина имеет место и для атомных ядер.

Однако полное придание осмысленности и бозонным (целые спины), и фермионным (полуцелые) квантовым полям было достигнуто далеко не сразу. Для начала проявила себя проблема нулевых колебаний: в вакуумном состоянии поля прячется неустранимая «остаточная» энергия колебательных систем. Неприятность тут в том, что эта энергия бесконечно велика по той простой причине, что в любом поле колебательных систем бесконечно много и каждая дает свой вклад.

«На полпути» к квантовой теории поля с той же проблемой столкнулся и Дирак: энергия моря электронов с отрицательной энергией неминуемо получалась бесконечной, и единственная надежда на осмысленность состояла в том, чтобы считать эту энергию ненаблюдаемой – находя опору в том обстоятельстве, что важны только различия в энергиях между состояниями. В квантовой теории поля удалось изгнать бессмысленную бесконечно большую энергию вакуума похожим образом, но «с соблюдением приличий»: не без некоторого изящества модифицировав математические правила обращения с квантовыми колебательными системами – а именно, со стоящими за ними операциями рождения и уничтожения.

Изменение математических правил, даже если оно допустимо само по себе, может, конечно, увести прочь от описываемых физических явлений, но, судя по всему, сговор математики и физики так просто не разрушить. Несмотря на математическую эквилибристику, квантовая теория поля остается (а может быть, благодаря этой математической эквилибристике становится) адекватным описанием физического мира. Но здесь понадобилась неординарная изобретательность, потому что относительно безобидное избавление от бесконечной энергии вакуума было только началом.

Существенно более напряженный оборот дело приняло при описании взаимодействий полей. Проблема здесь – в сверхизобилии возможностей. Например, чтобы два электрона электрически отталкивались, им нужно «разговаривать» друг с другом; «языком», как уже говорилось, служит обмен фотонами. Но беда в том, что «слова» в этом языке «сами говорят» – производя новые слова, которые запутываются с другими в невероятно сложное многоголосие.

Вот что происходит. Каждый фотон, которым обмениваются два электрона, переносит между ними энергию и импульс, но в каком именно количестве, никак не фиксировано. Квантовая механика – ожидаемым образом! – предписывает сложить вклады всех возможностей{119}. Вклады эти – в величину, которая очень похожа на волновую функцию и которую я временно назову предвероятностью: ее квадрат дает собственно вероятность. Предвероятность чего именно? Если, например, нам интересно узнать, как электроны «повернут» в результате взаимодействия, мы начинаем с электронов с заданными импульсами, направленными хотя бы отчасти навстречу друг другу, и интересуемся предвероятностями, с которыми они получат определенные импульсы при разлете.

1 ... 55 56 57 58 59 ... 61 ВПЕРЕД
Перейти на страницу:
Комментарии (0)