Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов
24
В разных других интервалах длин волн лежат (от длинных к коротким) радиоволны, волны в вашей микроволновке, терагерцевые (субмиллиметровые) волны, за которыми идет уже упоминавшееся инфракрасное излучение и видимый свет, а далее ультрафиолет, рентгеновские лучи и жесткое гамма-излучение.
25
При каждой температуре есть длина волны, на которой нагретое до данной температуры тело излучает наиболее интенсивно, тогда как для более коротких и более длинных волн интенсивность заметно спадает. Закон излучения описывает это численно. Речь в этом законе идет об «абсолютно черном теле». Этот термин может ввести в заблуждение: он означает тело, которое ничего не отражает, а только излучает свет, причем по той единственной причине, что оно, тело, имеет определенную температуру; (абсолютно) черным оно является только при абсолютном нуле. Солнце – неплохой пример «абсолютно черного тела».
26
Квантование света – сколь бы экстраординарной ни выглядела эта идея в 1905 г. – объясняло странный факт: свет с большей длиной волны не выбивает электроны из материала, даже если этот свет очень яркий, т. е. совокупно доставляет к поверхности много энергии. Дело оказалось в том, что если каждый выбиваемый из материала электрон получает необходимую для этого энергию только от одного фотона, то пока энергии фотонов малы – свет длинноволновый, – электроны попросту не получают достаточной энергии, чтобы вырваться наружу, и остаются внутри материала. Увеличение яркости света не меняет ситуации, пока длина волны та же: неважно, сколько фотонов падает на поверхность, если ни один не может передать электрону нужной энергии. А вот при уменьшении длины волны картина меняется: каждый фотон несет больше энергии, получая которую электрон вылетает наружу, причем со все большей энергией по мере дальнейшего уменьшения длины волны.
27
Еще один «квантовый шаг» в том же 1913 г. сделал Бор, распространив идеи дискретности на модель атома. Модель сводилась к постулатам о том, какие орбиты «разрешены» для электрона в атоме, все еще представляемом как подобие планетной системы. При этом понятие «разрешены» получало довольно искусственное обоснование. Модель работала для простейшего атома – водорода; она показала, что необходимо мыслить неординарно, но не годилась ни для одного более сложного атома. Последовавшая затем Первая мировая война затруднила обмен идеями (и не только его), и развитие квантовой теории возобновилось уже в 1920-е гг.
28
Нобелевскую премию 1964 г. «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера-лазера» получили Басов, Прохоров и Таунс.
29
Из теоретических соображений Эйнштейн сознавал, что фотоны не могли быть в полной мере статистически независимы друг от друга, как молекулы в обычном (классическом) газе. Бозе точно выразил такую зависимость в своей статье, которую, однако, не приняли к публикации в журнале, поэтому Бозе прислал ее Эйнштейну для возможной публикации в другом издании после перевода на немецкий, если она окажется заслуживающей внимания. Эйнштейн оценил идею, перевел статью на немецкий и отправил в журнал с короткой припиской от себя, а тем временем понял, что идея приложима шире, не только к фотонам, но и к собранию одинаковых частиц любой массы, главное статистическое свойство которых – принципиальная неразличимость вместе с некоторой склонностью к «коллективизму» (сейчас это описывается как принадлежность к классу бозонов). До того считалось, что хотя атомы любого газа одинаковы, они в принципе различимы, но в новой схеме нет возможности даже говорить о том, какая из двух частиц полетела налево, а какая направо; из-за этого имеется меньше способов организовать картину «одна слева, другая справа», и таким образом нарушается привычная статистическая независимость, когда каждая частица вносит вклад в разнообразие возможностей независимо от всех остальных. Это влекло за собой теоретические последствия, включая более последовательный вывод закона Планка (собственно, результат Бозе) и выражения для теплоемкости твердых тел, а также идею о «конденсате», высказанную Эйнштейном в статье, вышедшей уже в 1925 г.
30
Бор, по-видимому, желал развить – и применять сначала в квантовой теории, а затем по возможности повсеместно – «принцип дополнительности». О нем сейчас еще можно услышать от физиков, но философы едва ли рассматривают его как сколько-нибудь серьезную идею.
31
Быть может, стоит прокомментировать потерю наглядности, начав с электрона в атоме. Он не движется там по какой бы то ни было траектории (и вообще не находится в определенной точке пространства ни в какой момент времени), но интуитивно трудно отделаться от ощущения, что он все-таки «как-то там вращается». В действительности же наглядной картины нет, ее заменяют те самые два «атрибута вращения»; вместе с уровнем энергии они и описывают, «как устраиваются» электроны в атомах. Сейчас же обсуждаются атрибуты вращения, которые относятся к электрону самому по себе – прикреплены к нему постоянно и неотъемлемо, вне всякой связи с атомом. Для них наглядной картины, разумеется, нет, но ведь ее не было и в отношении атрибутов вращения электрона в атоме: ответа на вопрос «как и что вращается», если иметь в виду наглядную картину вращения, не предполагается ни в том, ни в другом случае. Квантовая механика не требует никаких подробностей, если выполняются формальные соотношения.
32
Как мы видели в главе 4, если «раскруточное» число равно 0, то число, отвечающее второму атрибуту вращения, может быть только нулевым; если раскруточное равно 1, то для второго открываются три возможности: –ħ, 0, ħ; если равно 2 – то пять возможностей: –2ħ, –ħ, 0, ħ, 2ħ; и т. д. Шаг между соседними значениями равен ħ. Стоящее за этим правило удается сохранить и для полуцелых раскруточных чисел; в частности, при раскруточном числе 1/2 для второго атрибута вращения остаются доступными всего две возможности: –ħ/2 и ħ/2, расстояние между которыми по-прежнему равно ħ.
33
Атрибуты вращения обоих видов – и связанные с состоянием электрона в атоме, и собственно спин электрона – участвуют в определении формы таблицы Менделеева. Каждая клетка в ней – отражение дискретности для разрешенных значений энергии и атрибутов вращения. При каждом возможном значении энергии из списка (с номерами 1, 2, 3, …) «степень раскрутки» электрона определяется целым числом, для которого разрешен ограниченный набор значений. А именно, для энергии № 1 из списка это целое число может быть только равно 0; для энергии № 2 оно может быть равно 0 или 1; для энергии № 3 – равно 0, 1 или 2; и т. д. А для каждого числа, измеряющего степень раскрутки, имеется свой собственный набор значений для второго атрибута вращения. Состояние электрона в атоме определяется, таким образом, набором трех целых чисел: одно отвечает за энергию и два за атрибуты вращения. На этом мы остановились в главе 4, пообещав одно уточнение. Оно состоит в том, что из-за наличия спина каждой подходящей тройке чисел могут соответствовать два электрона в атоме: они различаются тем, что их спины направлены противоположно. Два электрона – максимум при заданном «энергетическом» числе и двух атрибутах вращения; третьего такого же они не потерпят. Отсюда следует, что при движении по клеткам в таблице элементов (при чтении ее как книги, слева направо вдоль строк и сверху вниз по строкам) все новые электроны вынуждены осваивать состояния со все более высокими энергиями, что приводит к периодическому повторению схожих, до некоторой степени, химических свойств. Из приведенных ограничений на возможные значения чисел, отвечающих за атрибуты вращения, и из наличия спина следуют длины периодов в таблице Менделеева.
34
Спином обладают не только электроны, но и другие составные части материи, протоны и нейтроны (последние – при отсутствии электрического заряда), а если смотреть глубже – то и кварки, из которых протоны и нейтроны состоят. Спином могут обладать как атомные ядра, так и атомы
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Алексей Михайлович Семихатов, относящееся к жанру Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


