`
Читать книги » Книги » Научные и научно-популярные книги » Физика » Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл

1 ... 43 44 45 46 47 ... 84 ВПЕРЕД
Перейти на страницу:

В табл. 12.1 содержится количественная информация об этих четырёх молекулах. В ней приводятся число связывающих электронов, число разрыхляющих электронов и итоговый результат, равный разности числа связывающих электронов и числа разрыхляющих. В таблице также приводится порядок связи. Последние две колонки особенно интересны.

Таблица 12.1. Свойства молекулярного иона водорода H2+, молекулы водорода H2, молекулярного иона гелия He2+ и молекулы He2

Связ. электроны, Разр. электроны, Разность, Порядок связи, Длина связи, Энергия связи

H2: 2; 0; 2; 1; 0,74Å; 7,2∙10−19Дж

H2+: 1; 0; 1; ½; 1,06Å; 4,2∙10−19Дж

He2+: 2; 1; 1; ½; 1,08Å; 5,4∙10−19Дж

He2: 2; 2; 0; 0; Нет; Нет

Данные, приведённые в табл. 12.1, — это результаты экспериментальных измерений. Прежде всего, остановимся на длине химической связи. Она выражена в ангстремах (1 Å = 10−10 м). Молекулярный ион H2+ имеет связь порядка ½ и длину химической связи 1,06 Å. Для сравнения отметим, что молекула H2 имеет полноценную связь порядка 1 и длину химической связи 0,74 Å. Дополнительный электрон на связывающей МО в молекуле H2 удерживает атомы крепче и потому теснее. Молекулярный ион He2+ имеет связь порядка ½ и длину химической связи 1,08 Å, которая лишь незначительно больше, чем у молекулярного иона H2+. Конечно, He2 — это не молекула и поэтому не имеет химической связи. В последнем столбце приведена энергия связи в единицах 10−19 Дж. Интересна относительная сила связи. Молекула H2 со связью порядка 1 имеет существенно бо́льшую энергию связи, чем два молекулярных иона, в которых порядок связи составляет ½. Так простые диаграммы МО позволяют узнать, будет ли существовать связь, и дают информацию о том, насколько сильной она окажется.

В этой главе мы воспользовались представлениями о молекулярных орбиталях для рассмотрения простейших молекул. Обсуждение касалось только атомов, содержащих 1s-электроны. Все остальные атомы и молекулы содержат больше электронов и больше орбиталей. В следующей главе представленные здесь идеи будут использоваться для анализа двухатомных молекул, включающих более крупные атомы, такие как молекула кислорода O2 и молекула азота N2. Эти две молекулы являются основными составляющими воздуха, которым мы дышим.

13. Что удерживает атомы вместе: двухатомные молекулы

Молекула водорода является двухатомной, то есть состоит лишь из двух атомов. В процессе изучения водорода мы обнаружили, что атомы могут объединять свои атомные орбитали, образуя молекулярные орбитали. Нам предстоит расширить обсуждение молекулярных орбиталей, с тем чтобы понять, как из атомов образуются более сложные молекулы. Начнём мы с рассмотрения других двухатомных молекул на примере N2, O2, F2 и HF. Молекулы N2, O2 и F2 (азот, кислород и фтор) называются гомонуклеарными, поскольку состоят из одинаковых атомов. Молекула HF (фтороводород) — гетеронуклеарная, поскольку два её атома различны. Анализ гомонуклеарных двухатомных молекул выведет нас за рамки того, что мы узнали о молекуле водорода, которая является частным случаем. Изучение природы молекулярных орбиталей в гетеронуклеарных двухатомных молекулах — это важный шаг вперёд к пониманию многоатомных молекул, из которых состоит большинство окружающих нас молекулярных веществ — от спирта до жиров.

Молекула водорода — единственная нейтральная молекула, в которой для образования химических связей служат только электроны, находящиеся на 1s-обитателях. Электроны, используемые атомами для связывания между собой, называются валентными. В молекулах N2, O2, F2 и HF в образование связей вовлечены орбитали 2s и 2p. 2s- и 2p-электроны являются валентными электронами. Атомы N, O, и F расположены во второй строке Периодической таблицы. У атомов из третьей строки Периодической таблицы, таких как P, S и Cl (фосфор, сера и хлор), связывание обеспечивается валентными 3s- и 3p-электронами. Атомы из третьей и последующих строк Периодической таблицы могут также использовать для образования химических связей d-электроны. Здесь мы сконцентрируемся на очень важных элементах второй строки, но идеи, с которыми мы познакомимся, обладают значительной общностью и охватывают природу химических связей более тяжёлых элементов.

Сигма-связи (σ) и пи-связи (π)

Как показано на рис. 12.2, когда два атома водорода образуют молекулу H2, две 1s-орбитали водорода объединяются и формируют связывающую молекулярную орбиталь. Вдоль оси, соединяющей ядра, при этом имеется определённая электронная плотность. Связывающая и разрыхляющая молекулярные σ-орбитали (сигма-орбитали) имеют ненулевую электронную плотность вдоль линии, соединяющей ядра. Мы говорим, что в молекуле H2 σ-связь образована с использованием связывающей молекулярной σ-орбитали. s-орбитали всегда образуют σ-связи. Не существует способа объединить две s-орбитали и не получить никакой электронной плотности вдоль линии, соединяющей ядра. Однако для p-орбиталей это не так.

С учётом формы p-орбиталей их пары могут объединяться двумя способами, представленными на рис. 13.1. Орбитали на рисунке изображены очень схематично. В действительности это волны амплитуды вероятности, задающие диффузное распределение вероятности обнаружить электрон в том или ином месте относительно ядра. Приведённые здесь контуры отражают лишь общую форму p-орбиталей. Это лучше проиллюстрировано на рис. 10.7. Напомним, что у p-орбиталей есть узловая плоскость, располагающаяся между двумя лепестками. В узловой плоскости вероятность обнаружить электрон равна нулю. Для pz-орбитали узловой является плоскость xy (см. рис. 10.7). Вероятность обнаружить электрон в некоторой области пространства часто называют электронной плотностью. Высокая плотность означает высокую вероятность обнаружения электрона.

Рис. 13.1. Пара сблизившихся между собой p-орбиталей. Вверху: орбитали сближаются концами; вдоль линии, соединяющей ядра, имеется ненулевая электронная плотность. Внизу: орбитали сближаются боками; вдоль линии, соединяющей ядра, электронная плотность равна нулю

В верхней части рис. 13.1 изображены две орбитали, сближающиеся друг с другом концами. Их лепестки направлены друг к другу. Ядра изображены жирными точками. Штриховая прямая соединяет ядра. Очевидно, что вдоль этой прямой, соединяющей ядра, имеется ненулевая электронная плотность. В нижней части рисунка изображены 2p-орбитали, сближающиеся друг с другом боками. Узловая плоскость перпендикулярна плоскости страницы. Ядра находятся в этой узловой плоскости. Вдоль прямой, соединяющей ядра, электронная плотность равна нулю. Лепестки орбиталей имеют знак: один лепесток положительный, а другой отрицательный. На обеих схемах (см. рис. 13.1) друг с другом сближаются положительные лепестки.

Сигма-орбитали молекул

Если атомные орбитали сближаются достаточно тесно, они могут образовывать связывающие и разрыхляющие молекулярные орбитали. Сначала мы рассмотрим образуемые атомными s- и p-орбиталями связывающие и разрыхляющие молекулярные σ-орбитали. У таких орбиталей имеется отличная от нуля электронная плотность вдоль линии, соединяющей ядра. Как уже говорилось, s-орбитали могут образовывать только σ-орбитали, поскольку имеют сферическую форму. p-орбитали тоже могут образовывать σ-МО.

1 ... 43 44 45 46 47 ... 84 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Абсолютный минимум. Как квантовая теория объясняет наш мир - Файер Майкл, относящееся к жанру Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)