Читать книги » Книги » Научные и научно-популярные книги » Физика » Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей

Читать книгу Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей, Семихатов Алексей . Жанр: Физика.
Сто лет недосказанности: Квантовая механика для всех в 25 эссе - Семихатов Алексей
Название: Сто лет недосказанности: Квантовая механика для всех в 25 эссе
Дата добавления: 27 декабрь 2024
Количество просмотров: 385
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Сто лет недосказанности: Квантовая механика для всех в 25 эссе читать книгу онлайн

Сто лет недосказанности: Квантовая механика для всех в 25 эссе - читать онлайн , автор Семихатов Алексей

Квантовая механика – самый точный из известных человечеству способов описания мира на той фундаментальной глубине, которая определяет его структуру, но недоступна прямому наблюдению. Только благодаря квантовой природе удается существовать атомам, людям, звездам и почти всему остальному. Квантовые эффекты, которые уже задействованы в технологиях, максимально приближаются к нашим представлениям о чудесах. Но в силу самого своего устройства квантовая механика оставляет недосказанности в отношении поведения квантовых объектов и свойств реальности.

На заре второго квантового столетия Алексей Семихатов, автор бестселлера «Всё, что движется», предлагает последовательное изложение современного состояния квантовой механики. Каковы принципиальные особенности квантового мира и какой ценой их можно примирить с интуицией? По каким правилам развиваются квантовые системы во времени и как в это развитие вмешиваются вероятности? Как различные интерпретации квантовой механики подталкивают нас к глубоко философским заключениям о возможном устройстве реальности – от параллельных вселенных до разрывов в восприятии? И как привычная нам реальность возникает из чуждой ей квантовой? Что все-таки делает квантовый компьютер, что и как вовлекается в квантовую запутанность и почему квантовым объектам приходится существовать без некоторых свойств? Оказывается, о квантовой механике можно всерьез говорить понятным языком, а обсуждение ее сложных мест делает этот разговор только интереснее.

Согласно квантовым законам и только лишь благодаря квантовым законам существуют атомы, из которых состоим и мы сами, и почти все на планете Земля; благодаря квантовым законам горит Солнце; квантовые процессы определяют взаимодействие света и вещества; весь наш мир собран из квантовых объектов. Но фундаментальная квантовая природа в глубине мира остается в основном незаметной из-за мельтешения огромного числа мельчайших участников. По отдельности они ведут себя квантово и взаимодействуют друг с другом тоже по квантовым правилам, но все вместе образуют привычный нам наблюдаемый, и почти ничем не квантовый, мир…. Парадоксальным образом привычные свойства окружающего мира основаны на чуждых ему квантовых явлениях.

 

Особенности

26 иллюстраций, нарисованных специально для книги. Иллюстратор Нюся Красовицкая предложила философско-метафорическое видение предмета, определяющая черта которого – отсутствие наглядности.

Квантовая механика не похожа на другие физические теории. Она поразительно успешна на практике, а ее логическая структура приводит к интригующим проблемам философского порядка. Ее вычислительная схема основана на строгих формальных предписаниях, но знаменательным образом обходит стороной вопрос о том, что же физически происходит в пространстве-времени. И в соответствии со своей собственной логикой квантовая механика ставит перед нами вопросы об устройстве реальности, но не затрудняет себя однозначными ответами.

 

Для кого

Для тех, кому интересно, какие правила игры, радикально отличающиеся от привычных, лежат в самой основе мира и определяют устройство и нас самих, и почти всего, что нас окружает.

Мир выглядел бы совершенно безумным, если бы в нашем восприятии отражалась даже малая часть экзотически запутанных состояний, которые в огромном количестве возникают в ходе эволюции волновой функции под управлением уравнения Шрёдингера. Общим местом была бы неопределенность положения и ориентации в пространстве; объекты находились бы в самых немыслимых комбинациях запутанных свойств.

1 ... 40 41 42 43 44 ... 61 ВПЕРЕД
Перейти на страницу:

Вычисление в обычном компьютере, как правило, требует выполнения большого количества операций, и критический вопрос – как это количество операций растет по мере того, как увеличивается объем входных данных. В целом ряде задач оно растет так быстро, что скоро даже суперкомпьютеру требуются годы вычислений. Актуальным примером является задача разложения чисел на множители – актуальным потому, что на ее сложности для обычных компьютеров основаны распространенные схемы шифрования. Число 15 мы разлагаем на множители (3 и 5) в уме, разложение числа 323 потребует от вас небольших усилий, а машина сделает это шутя, но перед серьезными числами, в несколько сотен знаков, компьютер уже практически бессилен: ему придется перепробовать так много вариантов, что ответ появится только тогда, когда давно уже перестанет представлять интерес. Квантовый же алгоритм разложения на множители обходится без лавинообразного роста числа операций. Требуется только достаточное количество кубитов – а как мы видели, уже тысяча кубитов позволяет оперировать с очень значительными числами.

Причина, по которой квантовый компьютер исполняет некоторые избранные алгоритмы несравненно быстрее, чем обычный компьютер решает ту же задачу с помощью доступных ему методов, – как раз в том, что волновая функция всех кубитов вместе взятых, подчиняясь уравнению Шрёдингера, эволюционирует во времени как единое целое.

Дело даже не в том, что, как часто можно услышать, «каждый кубит является нулем и единицей одновременно» (эта фраза означает попросту, что состояние кубита может быть какой-то комбинацией «a А плюс b Б» с любыми числами a и b). Сила квантового компьютера происходит не столько отсюда, сколько из запутывания различных кубитов и комбинирования состояний, относящихся к группам кубитов. Например, волновая функция группы из четырех кубитов может выражаться как комбинация состояний «А, А, А, А», «Б, Б, Б, Б» и «А, Б, А, Б» (наугад выбранных мною для иллюстрации из 16 возможностей), каждое с каким-то сопровождающим его внутренним числом. Ни про один кубит из четырех при этом нельзя сказать, что он «представляет собой ноль и единицу одновременно». Эволюционирует же во времени, как всегда в квантовой механике, вся комбинация целиком, т. е. «a (А, А, А, А) плюс b (Б, Б, Б, Б) плюс c (А, Б, А, Б)». Собственно говоря, эволюционируют «внутренние» числа a, b, c и так далее – изменяются таким образом, чтобы к концу вычисления самое большое из них сопровождало правильный ответ (если правильный ответ – АБАБ, т. е. число 5, то больше других должно стать число c).

Конечно, эволюционируя в ходе выполнения алгоритма, волновая функция может представлять собой комбинацию всех состояний: всех 16 в только что приведенном примере четырех кубитов, всех 1024, если кубитов десять, или всех 126765060022822-9401496703205376, если кубитов сто. Перед каждым состоянием в результате исполнения квантовой схемы вычислений появится какое-то внутреннее число, определяющее вероятность при финальном измерении. При желании можно думать, что квантовый компьютер пробует все «ответы», правильный наряду со всеми неправильными, но для правильного алгоритм «выращивает» внутреннее число, дающее самую большую вероятность.

Все это неплохо в принципе, но на практике деликатные физические системы легко выходят из-под контроля. Теоретическая схема работы квантового компьютера исключает обмен информацией с окружающей средой в процессе исполнения алгоритма, но на практике полностью исключить взаимодействие с ней нельзя, и в результате среда так и норовит внести неконтролируемые изменения в состояния кубитов. Кроме того, какие-то из преобразований, составляющих схему квантовых вычислений (упомянутый выше CNOT и его друзья), могут выполняться неточно. У каждого физического устройства есть показатель надежности, и это никогда не сто процентов. Финальное измерение также может произойти с ошибкой. Наконец, кубит может втянуться в «разговор» (взаимодействие) с соседним кубитом, в результате чего возникнут непредусмотренные изменения в их состоянии.

При этом ошибки, случающиеся в квантовых компьютерах, более разнообразны, чем в обычных. Там сбой может состоять только в неконтролируемой замене 0 на 1 или наоборот. Средства борьбы с этим развиты чрезвычайно хорошо (в том числе, конечно, из-за необходимости постоянного использования в интернете) и сводятся тем или иным образом к передаче избыточной информации. Иллюстрацией может служить самая незамысловатая схема утроения: вместо 0 вы передаете 000, а вместо 1, понятно, 111. Если в таком случае принимающая сторона получила, скажем, сигнал 010, то в предположении, что произошла одна ошибка (а не две, что менее вероятно), его следует воспринимать как 000, т. е. попросту 0{81}.

Квантовый аналог этой единственной классической ошибки – случайная замена в кубите состояния «А» на состояние «Б» или наоборот. Но кроме этого с кубитом может случиться что-то совсем другое, не имеющее классического аналога: замена состояния «А плюс Б» на «А минус Б» (это два различных состояния, дальнейшая эволюция которых приведет к различным финальным волновым функциям всей системы){82}.

Мало того, что квантовых ошибок больше, исправление их на первый взгляд кажется невыполнимой задачей. Проблема возникает уже с избыточностью: нельзя создать копию квантового состояния, не разрушив оригинал (теорема о запрете клонирования, упоминавшаяся в предыдущей главе). Поэтому отправить три (да и два) одинаковых состояния вместо одного попросту невозможно. Если этого мало, то есть еще одно обстоятельство, тоже фундаментальное. Нельзя «подглядывать», как идут квантовые вычисления: измерение, выполняемое с целью «проверить, нет ли сбоя», разрушает волновую функцию, и из всех содержавшихся в ней возможностей остается одна – волновая функция коллапсирует, вычислению конец (преждевременный).

Борьба с квантовыми ошибками выглядит проигранной еще до того, как она началась. Поэтому неудивительно, что энтузиазм в отношении квантовых вычислений находился на крайне низком уровне до 1995 г., когда был открыт первый квантовый код для исправления ошибок. На помощь пришла запутанность.

Из состояния одного кубита «a А плюс b Б» (с любыми внутренними числами a и b) можно создать состояние трех кубитов «a (А, А, А) плюс b (Б, Б, Б)». Здесь, во-первых, сохранились те же внутренние числа a и b, во-вторых, видна избыточность, а в-третьих, запрета на создание такого состояния нет – оно не представляет собой трехкратное повторение одного и того же состояния первого кубита, избыточность встроена в него более тонким (если угодно, запутанным) образом.

Для этого, разумеется, нужны два дополнительных кубита – посторонних по отношению к тем, на которых в идеальной ситуации предлагается выполнять вычисление. Про них полезно знать, что их начальное состояние, скажем, «А». Применяя преобразования CNOT к основному кубиту и первому вспомогательному, а затем еще раз к основному и второму вспомогательному, мы из исходного «a А плюс b Б» создаем желаемое «избыточное» состояние «a (А, А, А) плюс b (Б, Б, Б)».

Контрольные измерения затем выполняются таким образом, чтобы отслеживать изменения в состоянии вспомогательных кубитов. Из этих измерений можно сделать заключение о характере случившейся ошибки или о ее отсутствии, и в первом случае определить преобразование (не измерение!), которое надо произвести над «основными» кубитами для ее исправления{83}.

Вопрос сегодняшнего дня – успеваем ли мы бежать впереди накапливающихся ошибок? Для коррекции неизбежных ошибок мы добавляем новые кубиты к тем, которые теоретически необходимы для вычисления, а также выполняем дополнительные преобразования. Они тоже работают не идеально, и требуются дополнительные кубиты для коррекции ошибок, возникающих при коррекции ошибок. Кто кого? Сколько физических кубитов потребуется, чтобы надежно выполнять квантовые вычисления на 1000 идеальных кубитов? Миллион?!

1 ... 40 41 42 43 44 ... 61 ВПЕРЕД
Перейти на страницу:
Комментарии (0)