`
Читать книги » Книги » Научные и научно-популярные книги » Физика » Ричард Фейнман - 3a. Излучение. Волны. Кванты

Ричард Фейнман - 3a. Излучение. Волны. Кванты

1 ... 20 21 22 23 24 ... 30 ВПЕРЕД
Перейти на страницу:

(37.1)

т. е. вероятности просто складываются. Действие двух дырок складывается из действий каждой дырки в отдельности. Этот результат наблюдений мы назовем отсутствием интерференции по причине, о которой вы узнаете после. На этом мы покончим с пулями.

Они приходят порциями, и вероятность их попадания скла­дывается без интерференции.

§ 3. Опыт с волнами

Теперь проведем опыт с волнами на воде. Прибор показан схематически на фиг. 37.2. Это мелкое корытце, полное воды. Предмет, обозначенный как «источник волн», колеблясь при по­мощи моторчика вверх и вниз, вызывает круговые волны. Справа от источника опять стоит перегородка с двумя отверстиями, а дальше — вторая стенка, которая для простоты сде­лана поглощающей (чтобы волны не отражались): насыпана песчаная отмель. Перед отмелью помещается детектор; его опять, как и раньше, можно передвигать по оси х. Теперь де­тектор — это устройство, измеряющее «интенсивность» вол­нового движения. Представьте себе приспособление, измеряю­щее высоту волн. Если его шкалу откалибровать пропорцио­нально квадрату высоты, то отсчеты шкалы смогут давать интенсивность волны. Детектор, таким образом, будет опре­делять энергию, переносимую волной, или, точнее, долю энер­гии, доставляемую детектору.

Первое, в чем можно убедиться при помощи такого волно­вого аппарата,— это что интенсивность может быть любой ве­личины. Когда источник движется еле-еле, то и детектор пока­зывает тоже чуть заметное движение. Если же движение возрастет, то и в детекторе интенсивность подскочит. Интенсив­ность волны может быть какой угодно. Мы уже не скажем, что в интенсивности есть какая-то «порционность».

Заставим теперь волновой источник работать стабильно, а сами начнем измерять интенсивность волн при различных значениях х. Мы получим интересную кривую (кривая I12 на фиг. 37.2,в).

Но мы уже видели, откуда могут возникать такие картин­ки,— это было тогда, когда мы изучали интерференцию элек­трических волн. И здесь можно видеть, как первоначальная волна дифрагирует на отверстиях, как от каждой щели расходят­ся круги волн. Если на время одну щель прикрыть и измерить распределение интенсивности у поглотителя, то кривые вый­дут довольно простыми (см. фиг. 37.2,б)

Фиг. 37.2. Опыт с волнами на воде.

Кривая I1 — это интенсивность волн от щели 1 (когда ее измеряли, щель 2 была закрыта), а кривая I2 — интенсивность волн от щели 2 (при закрытой щели 1).

Мы видим со всей определенностью, что интенсивность /12, наблюдаемая, когда оба отверстия открыты, не равна сум­ме интенсивностей I1 и I2. Мы говорим, что здесь происходит «интерференция», наложение двух волн. В некоторых местах: (где на кривой Ii2 наблюдается максимум) волны оказываются «в фазе», пики волн складываются вместе, давая большую ам­плитуду и тем самым большую интенсивность. В этих местах говорят о «конструктивной интерференции». Она наблюдается в тех местах, расстояние которых от одной из щелей на целое число длин волн больше (или меньше) расстояния от другой.

А в тех местах, куда две волны приходят со сдвигом фаз p(т. е. находятся «в противофазе»), движение водил представ­ляет собой разность двух амплитуд. Волны «интерферируют деструктивно», интенсивность получается маленькой. Это бывает там, где расстояние от щели 1 до детектора отличается от расстояния между детектором и щелью 2 на нечетное число полуволн. Малые значения I12 на фиг. 37.2 отвечают местам, где две волны интерферируют деструктивно.

Вспомните теперь, что количественную связь между I1, I2 и I12 можно выразить следующим образом: мгновенная высо­та волны в детекторе от щели 1 может быть представлена в виде (действительной части) h’1eiwt, где «амплитуда» h’1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h’1|2. Высота волн от щели 2 тоже равна h2eiwt, а интенсивность пропорциональна |h’2|2. Когда обе щели открыты, высоты волн складываются, давая высоту (h’1+h’2)eiwt

и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерфери­рующих волн можно записать в виде

Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв h1+h2|2, мы напишем

где d-—разность фаз между h1 и h2 . Вводя интенсивности из (37.2), можем написать

Последний член и есть «интерференционный член».

На этом мы покончим с волнами. Интенсивность их мо­жет быть любой, между ними возникает интерференция.

§ 4. Опыт с электронами

Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3. Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой то­ком и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на короб­ку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пуш­кой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками

Фиг. 37.3. Опыт с электронами.

За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.

Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов при­бор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, из­вестно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.

Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полу­щелков».

Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк.........

щелк .... щелк-щелк ... ... щелк ... и т. д. Кому случалось видеть

счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколь­ко раз динамик щелкнул за достаточно длительное время (ска­жем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).

Когда мы переставляем детектор, частота щелчков то рас­тет, то падает, но величина (громкость) каждого «щелк» всегда остается одной и той же. Если мы охладим проволоку в пушке, частота щелчков спадет, но каждый «щелк» будет звучать, как прежде. Поставим у поглотителя два отдельных детектора; тогда мы сразу заметим, что щелкает то один из них, то другой, но никогда оба вместе. (Разве что иногда наше ухо не раз­делит двух щелчков, последовавших очень быстро один за дру­гим.) Мы заключаем поэтому, что все, что попадает в детектор, приходит туда «порциями». Все «порции» одной величины; в детектор (или поглотитель) попадает только целая «порция»; в каждый момент в поглотитель попадает только одна порция, Мы говорим: «Электроны всегда приходят одинаковыми пор­циями».

Как и в опыте со стрельбой из пулемета, мы попытаемся теперь поискать в новом опыте ответ на вопрос: «Какова отно­сительная вероятность того, что электронная «порция» попадет в поглотитель на разных расстояниях х от середины?» Как и в том опыте, мы получим относительную вероятность, подсчи­тывая частоту щелчков при стабильно работающей пушке. Вероятность, что порции окажутся на определенном расстоя­нии х, пропорциональна средней частоте щелчков при этом х. В результате нашего опыта получена интереснейшая кривая p12, изображенная на фиг. 37.3,в. Да! Именно так и ведут себя электроны!

§ 5. Интерференция электронных волн

1 ... 20 21 22 23 24 ... 30 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 3a. Излучение. Волны. Кванты, относящееся к жанру Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)