`
Читать книги » Книги » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5a. Электричество и магнетизм

Ричард Фейнман - 5a. Электричество и магнетизм

1 ... 16 17 18 19 20 ... 23 ВПЕРЕД
Перейти на страницу:

Имеется и физический резон в требовании, чтобы мы были в состоянии указать, где именно заключена энергия. По теории тяготения всякая масса есть источник гравитационного притя­жения. А по закону Е=тс2мы также знаем, что масса и энергия вполне равноценны друг другу. Стало быть, всякая энергия яв­ляется источником силы тяготения. И если б мы не могли узнать, где находится энергия, мы бы не могли знать, где расположена масса. Мы не могли бы сказать, где размещаются источники поля тяготения. И теория тяготения стала бы неполной.

Конечно, если мы ограничимся электростатикой, то способа узнать, где сосредоточена энергия, у нас нет. Но полная система максвелловских уравнений электродинамики снабдит нас не­сравненно более полной информацией (хотя и тогда, строго говоря, ответ до конца определенным не станет). Подробнее мы этот вопрос рассмотрим позже. А сейчас приведем лишь результат, касающийся частного случая электростатики

Фиг. 8.8. Каждый элемент объема dV=dxdydz в электриче­ском поле содержит в себе энер­гию (e0/2) E2dV.

Энергия заключена в том пространстве, где имеется электрическое поле. Это, ви­димо, вполне разумно, потому что известно, что, ускоряясь, заряды излучают электрические поля. И когда свет или радио­волны распространяются от точки к точке, они переносят с со­бой свою энергию. Но в этих волнах нет зарядов. Так что энер­гию хотелось бы размещать там, где есть электромагнитное поле, а не там, где есть заряды, создающие это поле. Таким об­разом, мы описываем энергию не на языке зарядов, а на языке создаваемых ими полей. Действительно, мы можем показать, что уравнение (8.28) численно совпадает с

(8.30)

Эту формулу можно толковать, говоря, что в том месте простран­ства, где присутствует электрическое поле, сосредоточена и энергия; плотность ее (количество энергии в единице объема) равна

(8.31)

Эта идея иллюстрируется фиг. 8.8.

Чтобы показать, что уравнение (8.30) согласуется с нашими законами электростатики, начнем с того, что введем в уравне­ние (8.28) соотношение между r и j, полученное в гл. 6:

Получим

(8.32)

Расписав покомпонентно подынтегральное выражение, мы

увидим, что

А наш интеграл энергий тогда равен

С помощью теоремы Гаусса второй интеграл можно превратить в интеграл по поверхности:

(8.34)

Этот интеграл мы подсчитаем для того случая, когда поверх­ность простирается до бесконечности (так что интеграл по объе­му обращается в интеграл по всему пространству), а все заряды расположены на конечном расстоянии друг от друга. Проще всего это сделать, взяв поверхность сферы огромного радиуса с центром в начале координат. Мы знаем, что вдали от всех заря­дов j изменяется как 1/R, a Сj как 1/R2. (И даже быстрее, если суммарный заряд нуль.) Площадь же поверхности большой сферы растет только как R2, так что интеграл по поверхности убывает по мере возрастания радиуса сферы как

(1/R)(1/R2)/R2= (1/R). Итак, если наше интегрирование захватит собой все пространство (R® Ґ), то поверхностный интеграл обратится в нуль, и мы обнаружим

(8.35)

Мы видим, что существует возможность представить энергию произвольного распределения зарядов в виде интеграла от плотности энергии, сосредоточенной в поле.

§ 6. Энергия точечного заряда

Новое соотношение (8.35) говорит нам, что даже у отдель­ного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением

так что плотность энергии на расстоянии r от заряда равна

За элемент объема можно принять сферический слой толщиной dr, по площади равный 4pr2. Полная энергия будет

(8.36)

Верхний предел г=Ґ не приводит к затруднениям. Но раз заряд точечный, то мы намерены интегрировать до самого нуля (r=0), а это означает бесконечность в интеграле. Уравнение (8.35) утверждает, что в поле одного точечного заряда содер­жится бесконечно много энергии, хотя начали мы с представле­ния о том, что энергия имеется только между точечными заря­дами. В нашу первоначальную форму для энергии совокупно­сти точечных зарядов (8.3) мы не включили никакой энергии взаимодействия заряда с самим собой. Что же потом случилось? А то, что, переходя в уравнении (8.27) к непрерывному распределению зарядов, мы засчитывали в общую сумму взаимодей­ствие всякого бесконечно малого заряда со всеми прочими беско­нечно малыми зарядами. Тот же учет велся и в уравнении (8.35), так что, когда мы применяем его к конечному точечному заряду, мы включаем в интеграл энергию, которая понадобилась бы, чтобы накопить этот заряд из бесконечно малых частей. И действи­тельно, вы могли заметить, что результат, следующий из урав­нения (8.36), мы могли бы получить также из выражения (8.11) для энергии заряженного шара, устремив его радиус к нулю.

Мы вынуждены прийти к заключению, что представление о том, будто энергия сосредоточена в поле, не согласуется с пред­положением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а не­большие зарядовые распределения. Но можно говорить и обрат­ное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о со­хранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднениями. И их ни­когда еще не удавалось преодолеть; существуют они и по сей день. Немного позже, когда мы познакомимся с некоторыми до­полнительными представлениями, такими, как импульс электро­магнитного поля, мы более подробно поговорим об этих основ­ных трудностях в нашем понимании природы

Глава 9

ЭЛЕКТРИЧЕСТВО В АТМОСФЕРЕ

§1. Градиент электрического потенциала в атмосфере

§2. Электрические токи в атмосфере

§3. Происхождение токов в атмосфере

§4. Грозы

§5. Механизм разделения зарядов

§6. Молния

§ 1. Градиент электрического потенциала в атмосфере

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное элект­рическое поле Е величиной 100 в/м. Знак поля отвечает отрицательному заряду земной поверх­ности. Это означает, что на улице потенциал на уровне вашего носа на 200 в выше, чем потен­циал на уровне пяток! Можно, конечно, спро­сить: «Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использо­вать эти 100 в для электрического освещения?» А можно и удивиться: «Если действительно между моим носом и моей пяткой имеется напря­жение 200 в, то почему же меня не ударяет то­ком, как только я выхожу на улицу?»

Сперва ответим на второй вопрос. Ваше те­ло — довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эк­випотенциальную поверхность. Обычно экви­потенциальные поверхности параллельны земле (фиг. 9.1, а), но когда на земле оказываетесь вы, то они смещаются, и поле начинает выглядеть примерно так, как показано на фиг. 9.1, б. Так что разность потенциалов между вашей ма­кушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.

Как же измерить такое поле, раз оно иска­жается от всего, что в него попадает? Имеется несколько способов. Один способ — располо­жить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха.

Фиг. 9.1. Распределение потенциала.

а — над землей; б — около человека, стоящего на ровном месте.

Если подождать довольно долго, то даже при очень малой проводимости воз­духа заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ — в качестве провод­ника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растека­ются по поверхности, а капли воды — это уходящие «куски по­верхности».) Потенциал ведра можно измерить электрометром.

1 ... 16 17 18 19 20 ... 23 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 5a. Электричество и магнетизм, относящееся к жанру Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)