`
Читать книги » Книги » Научные и научно-популярные книги » Физика » Ричард Фейнман - 5a. Электричество и магнетизм

Ричард Фейнман - 5a. Электричество и магнетизм

1 ... 11 12 13 14 15 ... 23 ВПЕРЕД
Перейти на страницу:

Чтобы мысль была яснее, рассмотрим только одномерный случай. Представим себе коллоидную частицу в виде очень боль­шого (по сравнению с атомом!) шара; тогда мы можем малую часть ее поверхности считать плоскостью. (Вообще, пытаясь понять новое явление, лучше разобраться в нем на чрезвычайно упрощенной модели; и только потом, поняв суть проблемы, стоит браться за более точные расчеты.)

Предположим, что распределение ионов создает плотность за­рядов р(х) и электрический потенциал j, связанные электро­статическим законом С2j =-r/e0, или в одномерном случае законом

(7.28)

Как бы распределились ионы в таком поле, если бы потен­циал подчинялся этому уравнению? Узнать это можно при помощи принципов статистической механики. Вопрос в том, как определить j, чтобы вытекающая из статистической меха­ники плотность заряда тоже удовлетворяла бы условию (7.28)?

Согласно статистической механике (см. вып. 4, гл. 40), час­тицы, пребывая в тепловом равновесии в поле сил, распределя­ются так, что плотность n частиц с координатой x дается фор­мулой

(7.29)

где U(x) — потенциальная энергия, k — постоянная Больцмана, а Т — абсолютная температура.

Предположим, что у всех ионов один и тот же электрический заряд, положительный или отрицательный. На расстоянии х от поверхности коллоидной частицы положительный ион будет обладать потенциальной энергией

Плотность положительных ионов тогда равна

а плотность отрицательных

Суммарная плотность заряда

или

(7.30)

Подставляя в (7.28), увидим, что потенциал j должен удов­летворять уравнению

(7.31)

Это уравнение решается в общем виде [помножьте обе его части на 2(dj/dx)и проинтегрируйте по х],но, продолжая упрощать задачу, мы ограничимся здесь только предельным случаем малых потенциалов или высоких температур Т. Малость j отвечает разбавленному раствору. Показатель экспоненты тогда мал, и можно взять

(7.32)

Уравнение (7.31) дает

(7.33)

Заметьте, что теперь в правой части стоит знак плюс (ре­шение не колебательное, а экспоненциальное).

Фиг. 7.7. Изменение по­тенциала у поверхности коллоидной частицы. D — дебаевская длина.

Общее решение (7.33) имеет вид

(7.34)

где

(7.35)

Постоянные А и В определяются из добавочных условий. В на­шем случае В должно быть нулем, иначе потенциал для боль­ших х обратится в бесконечность. Итак,

(7.36)

где А — потенциал при x=0 на поверхности коллоидной час­тицы.

Потенциал убывает в e раз при удалении на D (фиг. 7.7). Число D называется дебаевской длиной; это мера толщины ион­ной оболочки, окружающей в электролите каждую большую за­ряженную частицу. Уравнение (7.36) утверждает, что оболочка становится тоньше по мере увеличения концентрации ионов (n0) или уменьшения температуры.

Постоянную А в (7.36) легко получить, если известен поверх­ностный заряд а на поверхности заряженной частицы. Мы знаем, что

(7.37)

Но Е это также градиент j

(7.38)

откуда получается

(7.39)

Подставив этот результат в (7.36), мы получим (положив х=0), что потенциал коллоидной частицы равен

(7.40)

Заметьте, что этот потенциал совпадает с разностью потенциалов в конденсаторе с промежутком D и поверхностной плотностью заряда s .

Мы сказали, что коллоидные частицы не слипаются вслед­ствие электрического отталкивания. Но теперь мы видим, что невдалеке от поверхности частицы из-за возникающей вокруг нее ионной оболочки поле спадает. Если бы оболочка стала до­статочно тонкой, у частиц появился бы шанс столкнуться друг с другом. Тогда они бы слиплись, коллоид бы осадился и выпал из жидкости. Из нашего анализа ясно, что после добавления в коллоид подходящего количества соли начнется выпадение осадка. Этот процесс называется «высаливанием коллоида».

Другой интересный пример — это влияние растворения соли На осаждение белка. Молекула белка — это длинная, слож­ная и гибкая цепь аминокислот. На ней там и сям имеются за­ряды, и временами заряд какого-то одного знака, скажем отри­цательного, распределяется вдоль всей цепи. В результате вза­имного отталкивания отрицательных зарядов белковая цепь распрямляется. Если в растворе имеются еще другие такие же молекулы-цепочки, то они не слипаются между собой вследст­вие того же отталкивания. Так возникает в жидкости взвесь молекул-цепочек. Но стоит добавить туда соли, как свойства взвеси изменятся. Уменьшится дебаевская длина, молекулы начнут сближаться и свертываться в спирали. А если соли мно­го, то молекулы белка начнут выпадать в осадок. Существует множество других химических явлений, которые можно понять на основе анализа электрических сил.

§ 5. Электростатическое поле сетки

Напоследок мы хотим изложить еще одно интересное свой­ство электрических полей. Оно используется в электрических приборах, электронных лампах и для других целей. Речь идет о поведении электрического поля близ сетки, составленной из заряженных проволочек. Чтоб упростить задачу, возьмем плос­кую систему параллельных проволочек бесконечной длины, про­межутки между которыми одинаковы.

Если мы посмотрим на поле где-то высоко над плоскостью проволочек, перед нами предстанет однородное электрическое поле, такое, словно заряд распределен на плоскости равномер­но. По мере приближения к сетке начнутся отклонения от преж­ней однородности. Мы хотим оценить, насколько близко от сетки появятся заметные изменения в потенциале.

Фиг. 7.8. Эквипотен­циальные поверхности над однородной сеткой из заряженных прово­лочек.

На фиг. 7.8 показа­но примерное расположение эквипотенциальных поверхностей на разных расстояниях от сетки. Чем ближе к сетке, тем сильнее колебания. Двигаясь параллельно сетке, мы заметим, что поле изменяется периодически.

Мы уже знаем (см. вып. 4, гл. 50), что любая периодическая величина может быть представлена в виде суммы синусных волн (теорема Фурье). Посмотрим, нельзя ли найти подходящую коле­бательную функцию, которая удовлетворяет нашим уравнениям поля.

Если проволочки лежат в плоскости ху параллельно оси y, то можно попробовать испытать члены вида

(7.41)

где а — расстояние между нитями, а n число колебаний. (Мы предположили, что нити эти очень длинные, так что ника­ких изменений по у не заметно.) Полное решение должно со­стоять из суммы таких членов при n=1, 2, 3... Чтоб получился правильный потенциал, оно должно в области над сеткой (где зарядов нет) подчиняться уравнению Лапласа, т. е.

Испытывая этим уравнением функцию j из (7.41), мы получаем

(7.42)

т.е. Fn(z) должно удовлетворять условию

(7.43)

Итак, должно быть

(7.44)

(7.45)

Мы обнаружили, что если имеется компонента Фурье n гар­моники поля, то эта компонента должна убывать по экспоненте с высотой, причем характерным расстоянием является z0=a/2pn. Амплитуда у первой гармоники (n=1) уменьшается в е2pраз (очень резкое падение) каждый раз, когда мы удаляемся от сетки на величину одного промежутка а. Другие гармоники убы­вают еще быстрее. Мы видим, что уже на расстоянии в несколько а сетка кажется почти однородной, т. е. колебания поля очень малы. Конечно, всегда остается «нулевая гармоника» поля

j0=-E0z.

которая и дает однородное поле при больших z. Для полного решения нужно добавить этот член к сумме членов вида (7.41) с Fnиз (7.44) , причем каждый член надо взять с коэффициентом Аn. Эти коэффициенты выбираются так, чтобы после дифферен­цирования получилось поле, согласующееся с плотностью заря­дов К на проволочках сетки.

Развитым нами методом можно объяснить, почему электро­статическая защита с помощью сетки ничуть не хуже сплошных листов металла. Поле за сеткой равно нулю всюду, за исключе­нием промежутка у самой сетки, не превышающего по размерам нескольких ее ячеек. Мы видим, что медная сетка, которая на­много легче и дешевле сплошной медной обшивки, вполне при­годна для защиты чувствительного электрического оборудова­ния от возмущающих внешних полей.

1 ... 11 12 13 14 15 ... 23 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Ричард Фейнман - 5a. Электричество и магнетизм, относящееся к жанру Физика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)