Необъятный мир: Как животные ощущают скрытую от нас реальность - Эд Йонг

Необъятный мир: Как животные ощущают скрытую от нас реальность читать книгу онлайн
Рейтинги и премии
• Бестселлер The New York Times
• Входит топ-10 лучших книг года по версии The Wall Street Journal, The New York Times, Time, People, The Philadelphia Inquirer, Slate, Reader’s Digest, Chicago Public Library, Outside, Publishers Weekly, BookPage
• Названа одной из лучших книг года изданиями The New Yorker, The Washington Post, The Guardian, The Economist, Smithsonian Magazine, Prospect (UK), Globe & Mail, Esquire, Oprah Daily, Mental Floss, Marginalian, She Reads, Kirkus Reviews, Library Journal
• Книга получила медаль Эндрю Карнеги (2023)
О чем
Лауреат Пулитцеровской премии журналист Эд Йонг приглашает читателей в путешествие по ошеломительно разным способами, с помощью которых животные, от крошечных насекомых до огромных млекопитающих, воспринимают окружающий мир.
Наша планета полнится бесчисленными вкусами и звуками, текстурами и запахами, оттенками и вибрациями, электрическими и магнитными полями, но любое животное, включая и человека, с рождения и до смерти заключено внутри своего особого сенсорного пузыря – или, как говорят ученые, умвельта, – воспринимая всеми органами чувств лишь малую толику нашего необъятного мира.
В своей книге «Необъятный мир» Йонг выводит нас за границы нашего умвельта и вместе с нами пробует вообразить, каково это – чувствовать эхо порхающей бабочки, электрический заряд цветка или гидродинамический след давно уплывшей сельди. Мы отправимся по следам ищущих пожарища жуков, ориентирующихся по магнитному полю Земли черепах и наполняющих воду электрическими сигналами африканских рыб. Мы взглянем на мир четырьмя парами глаз паука-скакуна, послушаем вибрации крохотных букашек и выясним, что морда крокодила не менее чувствительна, чем пальцы хирурга. Мы познакомимся с самыми последними открытиями в области сенсорной зоологии, поймем, чем грозит животному миру звуковое и световое загрязнение окружающей среды, и узнаем, чем интересуется собака у ближайшего столба.
Марсель Пруст когда-то написал, что «единственное подлинное путешествие – это не путешествие к новым пейзажам, а обладание другими глазами». Книга Эда Йонга дает читателям уникальную возможность попутешествовать именно таким образом.
Земля полнится звуками и образами, текстурами и вибрациями, запахами и вкусами, электрическими и магнитными полями. Но каждое из живых существ приобщается лишь к небольшой части этой сокровищницы. Каждое заключено в собственном, только ему присущем сенсорном пузыре, пропускающем лишь отдельные отголоски необъятного мира.
Schiestl, F. P., et al. (2000) Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patterns of hydrocarbons as the key mechanism for pollination by sexual deception, Journal of Comparative Physiology A, 186(6), 567–574.
Schmitz, H., and Bleckmann, H. (1998) The photomechanic infrared receptor for the detection of forest fires in the beetle Melanophila acuminata (Coleoptera: Buprestidae), Journal of Comparative Physiology A, 182(5), 647–657.
Schmitz, H., and Bousack, H. (2012) Modelling a historic oil-tank fire allows an estimation of the sensitivity of the infrared receptors in pyrophilous Melanophila beetles, PLOS One, 7(5), e37627.
Schmitz, H., Schmitz, A., and Schneider, E. S. (2016) Matched filter properties of infrared receptors used for fire and heat detection in insects, in von der Emde, G., and Warrant, E. (eds), The ecology of animal senses, 207–234. Cham: Springer.
Schneider, E. R., et al. (2014) Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl, Proceedings of the National Academy of Sciences, 111(41), 14941–14946.
Schneider, E. R., et al. (2017) Molecular basis of tactile specialization in the duck bill, Proceedings of the National Academy of Sciences, 114(49), 13036–13041.
Schneider, E. R., et al. (2019) A cross-species analysis reveals a general role for Piezo2 in mechanosensory specialization of trigeminal ganglia from tactile specialist birds, Cell Reports, 26(8), 1979–1987.e3.
Schneider, E. S., Schmitz, A., and Schmitz, H. (2015) Concept of an active amplification mechanism in the infrared organ of pyrophilous Melanophila beetles, Frontiers in Physiology, 6, 391.
Schneider, W. T., et al. (2018) Vestigial singing behaviour persists after the evolutionary loss of song in crickets, Biology Letters, 14(2), 20170654.
Schneirla, T. C. (1944) A unique case of circular milling in ants, considered in relation to trail following and the general problem of orientation, American Museum Novitates, no. 1253.
Schnitzler, H.-U. (1967) Kompensation von Dopplereffekten bei Hufeisen-Fledermäusen, Naturwissenschaften, 54(19), 523.
Schnitzler, H.-U. (1973) Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum, Journal of Comparative Physiology, 82(1), 79–92.
Schnitzler, H.-U., and Denzinger, A. (2011) Auditory fovea and Doppler shift compensation: Adaptations for flutter detection in echolocating bats using CF-FM signals, Journal of Comparative Physiology A, 197(5), 541–559.
Schnitzler, H.-U., and Kalko, E. K. V. (2001) Echolocation by insect-eating bats, BioScience, 51(7), 557–569.
Schraft, H. A., Bakken, G. S., and Clark, R. W. (2019) Infrared-sensing snakes select ambush orientation based on thermal backgrounds, Scientific Reports, 9(1), 3950.
Schraft, H. A., and Clark, R. W. (2019) Sensory basis of navigation in snakes: The relative importance of eyes and pit organs, Animal Behaviour, 147, 77–82.
Schraft, H. A., Goodman, C., and Clark, R. W. (2018) Do free-ranging rattlesnakes use thermal cues to evaluate prey? Journal of Comparative Physiology A, 204(3), 295–303.
Schrope, M. (2013) Giant squid filmed in its natural environment, Nature, doi.org/10.1038/nature.2013.12202.
Schuergers, N., et al. (2016) Cyanobacteria use micro-optics to sense light direction, eLife, 5, e12620.
Schuller, G., and Pollak, G. (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: Evidence for an acoustic fovea, Journal of Comparative Physiology, 132(1), 47–54.
Schulten, K., Swenberg, C. E., and Weller, A. (1978) A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion, Zeitschrift für Physikalische Chemie, 111(1), 1–5.
Schumacher, S., et al. (2016) Cross-modal object recognition and dynamic weighting of sensory inputs in a fish, Proceedings of the National Academy of Sciences, 113(27), 7638–7643.
Schusterman, R. J., et al. (2000) Why pinnipeds don't echolocate, Journal of the Acoustical Society of America, 107(4), 2256–2264.
Schütz, S., et al. (1999) Insect antenna as a smoke detector, Nature, 398(6725), 298–299.
Schwenk, K. (1994) Why snakes have forked tongues, Science, 263(5153), 1573–1577.
Secor, S. M. (2008) Digestive physiology of the Burmese python: Broad regulation of integrated performance, Journal of Experimental Biology, 211(24), 3767–3774.
Seehausen, O., et al. (2008) Speciation through sensory drive in cichlid fish, Nature, 455(7213), 620–626.
Seehausen, O., van Alphen, J. J. M., and Witte, F. (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection, Science, 277(5333), 1808–1811.
Seidou, M., et al. (1990) On the three visual pigments in the retina of the firefly squid, Watasenia scintillans, Journal of Comparative Physiology A, 166, 769–773.
Seneviratne, S. S., and Jones, I. L. (2008) Mechanosensory function for facial ornamentation in the whiskered auklet, a crevice-dwelling seabird, Behavioral Ecology, 19(4), 784–790.
Sengupta, P., and Garrity, P. (2013) Sensing temperature, Current Biology, 23(8), R304–R307.
Senzaki, M., et al. (2016) Traffic noise reduces foraging efficiency in wild owls, Scientific Reports, 6(1), 30602.
Sewell, G. D. (1970) Ultrasonic communication in rodents, Nature, 227(5256), 410.
Seyfarth, E.-A. (2002) Tactile body raising: Neuronal correlates of a "simple" behavior in spiders, in Toft, S., and Scharff, N. (eds), European Arachnology 2000: Proceedings of the 19th European College of Arachnology, 19–32. Aarhus: Aarhus University Press.
Shadwick, R. E., Potvin, J., and Goldbogen, J. A. (2019) Lunge feeding in rorqual whales, Physiology, 34(6), 409–418.
Shamble, P. S., et al. (2016) Airborne acoustic perception by a jumping spider, Current Biology, 26(21), 2913–2920.
Shan, L., et al. (2018) Lineage-specific evolution of bitter taste receptor genes in the giant and red pandas implies dietary adaptation, Integrative Zoology, 13(2), 152–159.
Shannon, G., et al. (2014) Road traffic noise modifies behaviour of a keystone species, Animal Behaviour, 94, 135–141.
Shannon, G., et al. (2016) A synthesis of two decades of research documenting the effects of noise on wildlife: Effects of anthropogenic noise on wildlife, Biological Reviews, 91(4), 982–1005.
Sharma, K. R., et al. (2015) Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna, Cell Reports, 12(8), 1261–1271.
Shaw, J., et al. (2015) Magnetic particle-mediated magnetoreception, Journal of the Royal Society Interface, 12(110), 20150499.
Sherrington, C. S. (1903) Qualitative difference of spinal reflex corresponding with qualitative difference of cutaneous stimulus, Journal of Physiology, 30(1), 39–46.
Shimozawa, T., Murakami, J., and Kumagai, T. (2003) Cricket wind receptors: Thermal noise for the highest sensitivity known, in Barth, F. G., Humphrey, J. A. C., and Secomb, T. W. (eds), Sensors and sensing in biology and engineering, 145–157. Vienna: Springer.
Shine, R., et al. (2002) Antipredator responses of free-ranging pit vipers (Gloydius shedaoensis, Viperidae), Copeia, 2002(3), 843–850.
Shine, R., et al. (2003) Chemosensory cues allow courting male garter snakes to assess body length and body condition of potential mates, Behavioral Ecology and Sociobiology, 54(2), 162–166.
Sidebotham, J. (1877) Singing mice, Nature, 17(419), 29.
Siebeck, U. E., et al. (2010) A species of reef fish that uses ultraviolet patterns for covert face recognition, Current Biology, 20(5), 407–410.
Sieck, M. H., and Wenzel, B. M. (1969) Electrical activity of the olfactory bulb of the pigeon, Electroencephalography and Clinical Neurophysiology, 26(1), 62–69.
Siemers, B. M., et al. (2009) Why do shrews twitter? Communication or simple echo-based orientation, Biology Letters, 5(5), 593–596.
Silpe, J. E., and Bassler, B. L. (2019) A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision, Cell, 176(1–2), 268–280.e13.
Simmons, J. A., Ferragamo, M. J., and Moss, C. F. (1998) Echo-delay resolution in sonar images of the big brown bat, Eptesicus fuscus, Proceedings of the National Academy of Sciences, 95(21), 12647–12652.
Simmons, J. A., and Stein, R. A. (1980) Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation, Journal of Comparative Physiology, 135(1), 61–84.
Simхes, J. M., et al. (2021) Robustness and plasticity in Drosophila