`
Читать книги » Книги » Компьютеры и Интернет » Программирование » Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ

Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ

1 ... 5 6 7 8 9 ... 73 ВПЕРЕД
Перейти на страницу:

Вернемся к препроцессору. Другой частый случай неправильного использования директивы #define – создание макросов, которые выглядят как функции, но не обременены накладными расходов, связанными с вызовом функций. Ниже представлен макрос, который вызывает некоторую функцию f c аргументом, равным максимальному из двух значений:

// вызвать f, передав ей максимум из a и b

#define CALL_WITH_MAX(a,b) f((a) > (b) ? (a) : (b))

В этой строчке содержится так много недостатков, что даже не совсем понятно, с какого начать.

Всякий раз при написании подобного макроса вы должны помнить о том, что все аргументы следует заключать в скобки. В противном случае вы рискуете столкнуться с проблемой, когда кто-нибудь вызовет его с выражением в качестве аргумента. Но даже если вы сделаете все правильно, посмотрите, какие странные вещи могут произойти:

int a = 5, b = 0;

CALL_WITH_MAX(++a, b); // a увеличивается дважды

CALL_WITH_MAX(++a, b+10); // a увеличивается один раз

Происходящее внутри max зависит от того, с чем она сравнивается!

К счастью, вы нет нужды мириться с поведением, так сильно противоречащим привычной логике. Существует метод, позволяющий добиться такой же эффективности, как при использовании препроцессора. Но при этом обеспечивается как предсказуемость поведения, так и контроль типов аргументов (что характерно для обычных функций). Этот результат достигается применением шаблона встроенной (inline) функции (см. правило 30):

template <typename T>

inline void callWithMax(const T& a, const T& b) // Поскольку мы не знаем,

{ // что есть T, то передаем

f(a > b ? a : b); // его по ссылке на const -

} // см. параграф 20

Этот шаблон генерирует целое семейство функций, каждая из которых принимает два аргумента одного и того же типа и вызывает f с наибольшим из них. Нет необходимости заключать параметры в скобки внутри тела функции, не нужно заботиться о многократном вычислении параметров и т. д. Более того, поскольку callWithMax – настоящая функция, на нее распространяются правила областей действия и контроля доступа. Например, можно говорить о встроенной функции, являющейся закрытым членом класса. Описать нечто подобное с помощью макроса невозможно.

Наличие const, enum и inline резко снижает потребность в препроцессоре (особенно это относится к #define), но не устраняет ее полностью. Директива #include остается существенной, а #ifdef/#ifndef продолжают играть важную роль в управлении компиляцией. Пока еще не время отказываться от препроцессора, но определенно стоит задуматься, как избавиться от него в дальнейшем.

Что следует помнить

• Для простых констант директиве #define следует предпочесть константные объекты и перечисления (enum).

• Вместо имитирующих функции макросов, определенных через #define, лучше применять встроенные функции.

Правило 3: Везде, где только можно используйте const

Замечательное свойство модификатора const состоит в том, что он накладывает определенное семантическое ограничение: данный объект не должен модифицироваться, – и компилятор будет проводить это ограничение в жизнь. const позволяет указать компилятору и программистам, что определенная величина должна оставаться неизменной. Во всех подобных случаях вы должны обозначить это явным образом, призывая себе на помощь компилятор и гарантируя тем самым, что ограничение не будет нарушено.

Ключевое слово const удивительно многосторонне. Вне классов вы можете использовать его для определения констант в глобальной области или в пространстве имен (см. правило 2), а также для статических объектов (внутри файла, функции или блока). Внутри классов допустимо применять его как для статических, так и для нестатических данных-членов. Для указателей можно специфицировать, должен ли быть константным сам указатель, данные, на которые он указывает, либо и то, и другое (или ни то, ни другое):

char greeting[] = “Hello”;

char *p = greeting; // неконстантный указатель,

// неконстантные данные

const char *p = greeting; // неконстантный указатель,

// константные данные

char * const p = greeting; // константный указатель,

// неконстантные данные

const char * const p = greeting; // константный указатель,

// константные данные

Этот синтаксис не так страшен, как может показаться. Если слово const появляется слева от звездочки, константным является то, на что указывает указатель; если справа, то сам указатель является константным. Наконец, если же слово const появляется с обеих сторон, то константно и то, и другое.

Когда то, на что указывается, – константа, некоторые программисты ставят const перед идентификатором типа. Другие – после идентификатора типа, но перед звездочкой. Семантической разницы здесь нет, поэтому следующие функции принимают параметр одного и того же типа:

void f1(const Widget *pw); // f1 принимает указатель на

// константный объект Widget

void f1(Widget const *pw); // то же самое делает f2

Поскольку в реальном коде встречаются обе формы, следует привыкать и к той, и к другой.

Итераторы STL смоделированы на основе указателей, поэтому iterator ведет себя почти как указатель T*. Объявление const-итератора подобно объявлению const-указателя (то есть записи T* const): итератор не может начать указывать на что-то другое, но то, на что он указывает, может быть модифицировано. Если вы хотите иметь итератор, который указывал бы на нечто, что запрещено модифицировать (то есть STL-аналог указателя const T*), то вам понадобится константный итератор:

std::vector<int> vec;

...

const std::vector<int>::iterator iter = // iter работает как T* const

vec.begin();

*iter = 10; // Ok, изменяется то, на что

// указывает iter

++iter; // ошибка! iter константный

std::vector<int>::const_iterator citer = // citer работает как const T*

vec.begin();

*citer = 10; // ошибка! *citer константный

++citer; // нормально, citer изменяется

Некоторые из наиболее интересных применений const связаны с объявлениями функций. В этом случае const может относиться к возвращаемому функцией значению, к отдельным параметрам, а для функций-членов – еще и к функции в целом.

Если указать в объявлении функции, что она возвращает константное значение, то можно уменьшить количество ошибок в клиентских программах, не снижая уровня безопасности и эффективности. Например, рассмотрим объявление функции operator* для рациональных чисел, введенное в правиле 24:

class Rational {…}

const Rational operator*(const Rational& lhs, const Rational& rhs);

Многие программисты удивятся, впервые увидев такое объявление. Почему результат функции operator* должен быть константным объектом? Потому что в противном случае пользователь получил бы возможность делать вещи, которые иначе как надругательством над здравым смыслом не назовешь:

Rational a, b, c;

(a*b)=c; // присваивание произведению a*b!

Я не знаю, с какой стати программисту пришло бы в голову присваивать значение произведению двух чисел, но могу точно сказать, что иногда такое может случиться по недосмотру. Достаточно простой опечатки (при условии, что тип может быть преобразован к bool):

if (a*b = c)... // имелось в виду сравнение!

Такой код был бы совершенно некорректным, если бы a и b имели встроенный тип. Одним из критериев качества пользовательских типов является совместимость со встроенными (см. также правило 18), а возможность присваивания значения результату произведения двух объектов представляется мне весьма далекой от совместимости. Если же объявить, что operator* возвращает константное значение, то такая ситуация станет невозможной. Вот почему Так Следует Поступать.

В отношении аргументов с модификатором const трудно сказать что-то новое; они ведут себя как локальные константные const-объекты. Всюду, где возможно, добавляйте этот модификатор. Если модифицировать аргумент или локальный объект нет необходимости, объявите его как const. Вам всего-то придется набрать шесть символов, зато это предотвратит досадные ошибки типа «хотел напечатать ==, а нечаянно напечатал =» (к чему это приводит, мы только что видели).

Константные функции-члены

Назначение модификатора const в объявлении функций-членов – определить, какие из них можно вызывать для константных объектов. Такие функции-члены важны по двум причинам. Во-первых, они облегчают понимание интерфейса класса, ведь полезно сразу видеть, какие функции могут модифицировать объект, а какие нет. Во-вторых, они обеспечивают возможность работать с константными объектами. Это очень важно для написания эффективного кода, потому что, как объясняется в правиле 20, один из основных способов повысить производительность программ на C++ – передавать объекты по ссылке на константу. Но эта техника будет работать только в случае, когда функции-члены для манипулирования константными объектами объявлены с модификатором const.

1 ... 5 6 7 8 9 ... 73 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ, относящееся к жанру Программирование. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)