Читать книги » Книги » Компьютеры и Интернет » Программирование » Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Читать книгу Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi, Джулиан Бакнелл . Жанр: Программирование.
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
Название: Фундаментальные алгоритмы и структуры данных в Delphi
ISBN: -
Год: -
Дата добавления: 3 июль 2019
Количество просмотров: 392
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Фундаментальные алгоритмы и структуры данных в Delphi читать книгу онлайн

Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн , автор Джулиан Бакнелл
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Перейти на страницу:

Обработка начинается с известного состояния дерева. Можно было бы определить дерево, отражающее частоту употребления букв английского алфавита или какое либо иное распределение символов, но на практике значительно проще создать идеально сбалансированное дерево. В этом случае каждый узел имеет три "указателя", которые в действительности являются всего лишь индексами других узлов в массиве, и мы определяем его таким же образом, как делали при работе с сортирующим деревом: дочерние узлы узла с индексом n располагаются в позициях 2n + 1 и 2n + 2, а его родительский узел - в позиции (n - 1)/2. Поскольку в действительности узлы не будут перемещаться в массив (мы собираемся манипулировать только индексами), позиции листьев всегда будут известны. Они всегда будут занимать одни и те же позиции в массиве: #0 всегда будет находиться в позиции с индексом 255, #1 - в позиции с индексом 256 и т.д. Код метода, выполняющего инициализацию дерева, показан в листинге 11.18. Этот метод вызывается из конструктора Create.

Листинг 11.18. Метод stInitialize

procedure TSplayTree.stInitialize;

var

i : integer;

begin

{создать полностью сбалансированное дерево; корневой узел будет соответствовать нулевому элементу; родительский узел узла n будет располагаться в позиции (n-1) /2, а его дочерние узлы - в позициях 2n+1 и 2n+2}

FillChar(FTree, sizeof(FTree), 0);

for i := 0 to 254 do

begin

FTree[i].hnLeftInx := (2 * i) + 1;

FTree[i].hnRightInx := (2 * i) + 2;

end;

for i := 1 to 510 do

FTree[i].hnParentInx := (i - 1) div 2;

end;

constructor TSplayTree.Create;

begin

inherited Create;

stInitialize;

end;

При сжатии символа мы находим его узел в дереве. Затем мы выполняем переходы вверх по дереву, сохраняя соответствующие биты в стеке (левой связи соответствует нулевой бит, а правой - единичный). По достижении корневого узла можно вытолкнуть биты из стека. Они определят код символа (в коде, приведенном в листинге 11.19, в качестве стека используется короткая строка).

Затем выполняется скос родительского узла по направлению к корневому узлу. Мы не выполняем скос к корню самого узла символа ввиду того, что требуется сохранить размещение символов в узлах листьев. В противном случае было бы совершенно исключено, чтобы код одного символа становился началом кода следующего. Скос родительского узла повлечет "перетаскивание" вместе с ним и дочернего узла. В результате чаще используемые символы окажутся ближе к верхушке дерева.

Листинг 11.19. Методы EncodeByte и stSplay

procedure TSplayTree.EncodeByte(aBitStream : TtdOutputBitStream;

aValue : byte)/

var

NodeInx : integer;

ParentInx : integer;

RevCodeStr : ShortString;

BitString : TtdBitString;

begin

{начиная с узла aValue, сохранить на каждом шаге (0) бит при перемещении вверх по дереву по левой связи и (1) бит при перемещении по правой связи}

RevCodeStr := 1 ';

NodeInx := aValue + 255;

while (NodeInx <> 0) do

begin

ParentInx := FTree[NodeInx].hnParentInx;

inc(RevCodeStr[0]);

if (FTree[ParentInx].hnLeftInx = NodeInx) then

RevCodeStr[length(RevCodeStr)] := f0' else

RevCodeStr[length(RevCodeStr)] := ' 11;

NodeInx := ParentInx;

end;

{преобразовать строковый код в строку битов}

stConvertCodeStr(RevCodeStr, BitString);

{записать строку битов в поток битов}

aBitStream.WriteBits(BitString);

{выполнить скос узла}

stSplay(aValue + 255);

end;

procedure TSplayTree.stConvertCodeStr(const aRevCodeStr : ShortString;

var aBitString : TtdBitString);

var

ByteNum : integer;

i : integer;

Mask : byte;

Accum : byte;

begin

{подготовиться к выполнению цикла преобразования}

ByteNum := 0;

Mask := 1;

Accum := 0;

{преобразовать порядок следования битов на противоположный}

for i := length (aRevCodeStr) downto 1 do

begin

if (aRevCodeStr[i] = '1') then

Accum := Accum or Mask;

Mask := Mask shl 1;

if (Mask = 0) then begin

aBitString.bsBits[ByteNum] := Accum;

inc(ByteNum);

Mask := 1;

Accum :- 0;

end;

end;

{сохранить биты, расположенные слева от текущего}

if (Mask <> 1) then

aBitString.bsBits [ByteNum] := Accum;

{сохранить двоичный код в массиве кодов}

aBitString.bsCount := length(aRevCodeStr);

end;

procedure TSplayTree.stSplay(aNodeInx : integer);

var

Dad : integer;

GrandDad : integer;

Uncle : integer;

begin

{выполнить скос узла}

repeat

{извлечь родительский узел данного узла}

Dad := FTree[aNodeInx].hnParentInx;

{если родительский узел является корневым, задача выполнена}

if (Dad= 0) then

aNodeInx := 0

{в противном случае необходимо выполнить поворот узла на 90 градусов с целью его перемещения вверх по дереву}

else begin

{извлечь родительский узел родительского узла}

GrandDad := FTree[Dad].hnParentInx;

{выполнить поворот на 90 градусов (т.е. поменять мечтами узел и его узел-дядю)}

if (FTree[GrandDad].hnLeftInx = Dad) then begin

Uncle := FTree[GrandDad].hnRightInx;

FTree[GrandDad].hnRightInx := aNodeInx;

end

else begin

Uncle := FTree[GrandDad].hnLeftInx;

FTree[GrandDad].hnLeftInx := aNodeInx;

end;

if (FTree[Dad].hnLeftInx = aNodeInx) then

FTree[Dad].hnLeftInx := Uncle

else

FTree[Dad].hnRightInx := Uncle;

FTree[Uncle].hnParentInx := Dad;

FTree[aNodeInx].hnParentInx :=GrandDad;

{возобновить цикл с узла-деда}

aNodeInx :=GrandDad;

end;

until (aNodeInx = 0);

end;

При восстановлении мы устанавливаем дерево в исходную конфигурацию, как это делалось на этапе сжатия. Затем мы по одному выбираем биты из потока битов и выполняем обычное перемещение вниз по дереву. По достижении листа, содержащего символ (который мы выводим в качестве восстановленных данных), мы будем выполнять скос родительского узла данного узла к корню дерева. При условии, что обновление дерева выполняется одинаково и во время сжатия, и во время восстановления, алгоритм декодирования может поддерживать дерево в том же состоянии, что и на соответствующем этапе выполнения алгоритма кодирования.

Листинг 11.20. Базовый алгоритм восстановления скошенного дерева

procedure TDSplayDecompress(aInStream, aOutStream : TStream);

var

Signature : longint;

Size : longint;

STree : TSplayTree;

BitStrm : TtdInputBitStream;

begin

{выполнить проверку того, что входной поток является корректно закодированным с использованием скошенного дерева}

aInStream.Seek(0, soFromBeginning);

aInStream.ReadBuffer(Signature, sizeof(Signature));

if (Signature <> TDSplayHeader) then

raise EtdSplayException.Create(FmtLoadStr(tdeSplyBadEncodedStrm,

[UnitName, 'TDSplayDecompress']));

aInStream.ReadBuffer(Size, sizeof(longint));

{при отсутствии данных для восстановления выйти из подпрограммы}

if (Size = 0) then

Exit;

{подготовиться к восстановлению}

STree := nil;

BitStrm := nil;

try

{создать поток битов}

BitStrm := TtdInputBitStream.Create(aInStream);

BitStrm.Name := 'Splay compressed stream';

{создать скошенное дерево}

STree := TSplayTree.Create;

{восстановить символы входного потока с использованием скошенного дерева}

DoSplayDecompression(BitStrm, aOutStream, STree, Size);

finally

BitStrm.Free;

STree.Free;

end;

end;

В процессе восстановления потока вначале за счет проверки сигнатуры выполняется проверка того, что поток является сжатым с использованием скошенного дерева. Затем мы считываем размер несжатых данных и осуществляем выход из подпрограммы, если он равен нулю.

При наличии данных для восстановления мы создаем входной поток битов, который будет содержать входной поток и скошенное дерево. Затем для выполнения реального декодирования вызывается метод DoSplayDecompression (см. листинг 11.21).

Листинг 11.21. Цикл восстановления скошенного дерева

procedure DoSplayDecompression(aBitStream : TtdInputBitStream;

aOutStream : TStream;

aTree : TSplayTree;

aSize : longint);

var

CharCount : longint;

Ch : byte;

Buffer : PByteArray;

BufEnd : integer;

begin

GetMem(Buffer, SplayBufferSize);

try

{предварительная установка значений переменных цикла}

BufEnd := 0;

CharCount := 0;

{повторять цикл до тех пор, пока не будут восстановлены все символы}

while (CharCount < aSize) do

begin {считать следующий байт}

Buffer^[BufEnd] := aTree.DecodeByte(aBitStream);

inc(BufEnd);

inc(CharCount);

{записать буфер в случае его заполнения}

if (BufEnd = SplayBufferSize) then begin

aOutStream.WriteBuffer(Buffer^,SplayBufferSize);

BufEnd := 0;

end;

end;

{записать любые оставшиеся в буфере данные}

if (BufEnd <> 0) then

aOutStream.WriteBuffer(Buffer^, BufEnd);

finally

FreeMem(Buffer, SplayBufferSize);

end;

end;

Как и в цикле декодирования дерева Хаффмана, буфер заполняется декодированными байтами с последующей их записью в выходной поток. Реальное декодирование и запись выполняется методом DecodeByte класса скошенного дерева.

Листинг 11.22. Метод TSplayTree.DecodeByte

function TSplayTree.DecodeByte(aBitStream : TtdInputBitStream): byte;

var

NodeInx : integer;

begin

{переместиться вниз по дереву в соответствии с битами потока битов, начиная с корневого узла}

NodeInx := 0;

while NodeInx < 255 do

begin

if not aBitStream.ReadBit then

NodeInx := FTree[NodeInx].hnLeftInx else

NodeInx := FTree[NodeInx].hnRightInx;

end;

{вычислить байт, исходя из значения индекса конечного узла}

Result := NodeInx - 255;

{выполнить скос узла}

stSplay(NodeInx);

end;

Этот метод всего лишь выполняет перемещение вниз по дереву, считывая биты из входного потока битов и осуществляя перемещение по левой или правой связи, в зависимости от того, является ли текущий бит нулевым или единичным. И, наконец, достигнутый узел листа скашивается по направлению к корневому узлу с целью повторения того, что произошло во время сжатия. Одинаковое выполнение скоса во время сжатия и восстановления гарантирует правильность декодирования данных.

Полный код реализации алгоритма сжатия с использованием скошенного дерева можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDSplyCm.pas.

Перейти на страницу:
Комментарии (0)