Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков


Охота на электроовец. Большая книга искусственного интеллекта читать книгу онлайн
Новый этап в области компьютерных технологий часто называют очередной «весной искусственного интеллекта». Её начало обычно отсчитывают с момента появления нейронной сети, сегодня известной под названием AlexNet, успех которой в распознавании зрительных образов возвестил о начале «революции глубокого обучения». В результате этой революции машинам удалось превзойти человеческий уровень при решении множества задач. Сегодня уже мало кого удивляют победы машин над сильнейшими игроками в го, создание ими музыки и картин, предсказание нейронными сетями пространственной структуры белков и другие вещи, которые десять лет назад мы посчитали бы чудесами. Алгоритмы искусственного интеллекта (ИИ) быстро вошли в нашу жизнь и стали её неотъемлемой частью. Например, каждый раз, когда вы делаете фотографию при помощи смартфона, её обработку выполняет нейронная сеть.
На смену весне искусственного интеллекта приходит лето. Эта книга рассказывает о том, какие события в истории науки привели к началу этого лета, о современных технологиях ИИ и их возможностях, а также пытается приоткрыть завесу, скрывающую от нас мир ближайшего будущего.
Мифы и заблуждения об искусственном интеллекте, страхи, насущные проблемы, перспективные направления исследований — обо всём этом вы узнаете из «Большой книги искусственного интеллекта».
3299
Kutalev A., Lapina A. (2021). Stabilizing Elastic Weight Consolidation method in practical ML tasks and using weight importances for neural network pruning // https://arxiv.org/abs/2109.10021
3300
Kutalev A. (2020). Natural Way to Overcome the Catastrophic Forgetting in Neural Networks // https://arxiv.org/abs/2005.07107
3301
Metz L., Maheswaranathan N., Freeman C. D., Poole B., Sohl-Dickstein J. (2020). Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves // https://arxiv.org/abs/2009.11243
3302
Baydin A. G., Pearlmutter B. A., Syme D., Wood F., Torr P. (2022). Gradients without Backpropagation // https://arxiv.org/abs/2202.08587
3303
Schlag I., Sukhbaatar S., Celikyilmaz A., Yih W.-t., Weston J., Schmidhuber J., Li X. (2023). Large Language Model Programs // https://arxiv.org/abs/2305.05364
3304
Sapunov G. (2023). Large Language Model Programs. A useful conceptualization for a wide set of practices for working with LLMs // https://gonzoml.substack.com/p/large-language-model-programs
3305
Schreiner M. (2022). Meta’s AI chief: Three major challenges of artificial intelligence / MIXED, Jan 29 2022 // https://mixed-news.com/en/metas-ai-chief-three-major-challenges-of-artificial-intelligence/
3306
LeCun Y. (2022). A Path Towards Autonomous Machine Intelligence // https://openreview.net/forum?id=BZ5a1r-kVsf
3307
Assran M., Duval Q., Misra I., Bojanowski P., Vincent P., Rabbat M., LeCun Y., Ballas N. (2023). Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture // https://arxiv.org/abs/2301.08243
3308
Dickson B. (2020). The GPT-3 economy / TechTalks, September 21, 2020 // https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/
3309
Asimov A. (2016). Foundation and Earth. HarperCollins Publishers // https://books.google.ru/books?id=0DW0rQEACAAJ
3310
* Пер. А. Ливерганта.
3311
Athalye A., Engstrom L., Ilyas A., Kwok K. (2017). Fooling Neural Networks in the Physical World with 3D Adversarial Objects // https://www.labsix.org/physical-objects-that-fool-neural-nets/
3312
Athalye А., Carlini N., Wagner D. (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples // https://arxiv.org/abs/1802.00420
3313
Athalye A., Carlini N., Haddad D., Patel S. (2018). Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples // https://github.com/anishathalye/obfuscated-gradients
3314
Athalye A., Engstrom L., Ilyas A., Kwok K. (2017). Synthesizing Robust Adversarial Examples // https://arxiv.org/abs/1707.07397
3315
Bourdakos N. (2017). Capsule Networks Are Shaking up AI — Here’s How to Use Them / Hackernoon, November 9th 2017 // https://hackernoon.com/capsule-networks-are-shaking-up-ai-heres-how-to-use-them-c233a0971952
3316
Sabour S., Frosst N., Hinton G. E. (2017). Dynamic Routing Between Capsules // https://arxiv.org/abs/1710.09829
3317
Tolstikhin I., Houlsby N., Kolesnikov A., Beyer L., Zhai X., Unterthiner T., Yung J., Steiner A., Keysers D., Uszkoreit J., Lucic M., Dosovitskiy A. (2021). MLP-Mixer: An all-MLP Architecture for Vision // https://arxiv.org/abs/2105.01601
3318
Liu H., Dai Z., So D. R., Le Q. V. (2021). Pay Attention to MLPs // https://arxiv.org/abs/2105.08050
3319
Li D., Hu J., Wang C., Li X., She Q., Zhu L., Zhang T., Chen Q. (2021). Involution: Inverting the Inherence of Convolution for Visual Recognition // https://arxiv.org/abs/2103.06255
3320
Hidalgo C. (2015). Why Information Grows: The Evolution of Order, from Atoms to Economies. Hachette UK // https://books.google.ru/books?id=0984DgAAQBAJ
3321
Swaminathan S., Garg D., Kannan R., Andres F. (2020). Sparse low rank factorization for deep neural network compression / Neurocomputing, Vol. 398, pp. 185—196 // https://doi.org/10.1016/j.neucom.2020.02.035
3322
Wu M., Parbhoo S., Hughes M. C., Roth V., Doshi-Velez F. (2019). Optimizing for Interpretability in Deep Neural Networks with Tree Regularization // https://arxiv.org/abs/1908.05254
3323
Akhtar N., Jalwana M., Bennamoun M., Mian A. S. (2021). Attack to Fool and Explain Deep Networks / IEEE Transactions on Pattern Analysis and Machine Intelligence, 26 May 2021 // https://doi.org/10.1109/TPAMI.2021.3083769
3324
Lang O., Gandelsman Y., Yarom M., Wald Y., Elidan G., Hassidim A., Freeman W. T., Isola P., Globerson A., Irani M., Mosseri I. (2021). Explaining in Style: Training a GAN to explain a classifier in StyleSpace // https://arxiv.org/abs/2104.13369
3325
Rogers A., Kovaleva O., Rumshisky A. (2020). A Primer in BERTology: What we know about how BERT works // https://arxiv.org/abs/2002.12327
3326
Geva M., Schuster R., Berant J., Levy O. (2020). Transformer Feed-Forward Layers Are Key-Value Memories // https://arxiv.org/abs/2012.14913
3327
Meng K., Bau D., Andonian A., Belinkov Y. (2022). Locating and Editing Factual Associations in GPT // https://arxiv.org/abs/2202.05262
3328
Eldan R., Russinovich M. (2023). Who's Harry Potter? Approximate Unlearning in LLMs // https://arxiv.org/abs/2310.02238
3329
Li K., Patel O., Viégas F., Pfister H., Wattenberg M. (2023). Inference-Time Intervention: Eliciting Truthful Answers from a Language Model // https://arxiv.org/abs/2306.03341
3330
Zou A., Phan L., Chen S., Campbell J., Guo P., Ren R., Pan A., Yin X., Mazeika M., Dombrowski A.-K., Goel S., Li N., Byun M. J., Wang Z., Mallen A., Basart S., Koyejo S., Song D., Fredrikson M., Kolter J. Z., Hendrycks D. (2023). Representation Engineering: A Top-Down Approach to AI Transparency // https://arxiv.org/abs/2310.01405
3331
Gurnee W., Tegmark M. (2023). Language Models Represent Space and Time // https://arxiv.org/abs/2310.02207
3332
*