Читать книги » Книги » Компьютеры и Интернет » Прочая околокомпьютерная литература » Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков

Читать книгу Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков, Сергей Сергеевич Марков . Жанр: Прочая околокомпьютерная литература / Программирование.
Охота на электроовец. Большая книга искусственного интеллекта - Сергей Сергеевич Марков
Название: Охота на электроовец. Большая книга искусственного интеллекта
Дата добавления: 23 январь 2025
Количество просмотров: 19
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Охота на электроовец. Большая книга искусственного интеллекта читать книгу онлайн

Охота на электроовец. Большая книга искусственного интеллекта - читать онлайн , автор Сергей Сергеевич Марков

Новый этап в области компьютерных технологий часто называют очередной «весной искусственного интеллекта». Её начало обычно отсчитывают с момента появления нейронной сети, сегодня известной под названием AlexNet, успех которой в распознавании зрительных образов возвестил о начале «революции глубокого обучения». В результате этой революции машинам удалось превзойти человеческий уровень при решении множества задач. Сегодня уже мало кого удивляют победы машин над сильнейшими игроками в го, создание ими музыки и картин, предсказание нейронными сетями пространственной структуры белков и другие вещи, которые десять лет назад мы посчитали бы чудесами. Алгоритмы искусственного интеллекта (ИИ) быстро вошли в нашу жизнь и стали её неотъемлемой частью. Например, каждый раз, когда вы делаете фотографию при помощи смартфона, её обработку выполняет нейронная сеть.
На смену весне искусственного интеллекта приходит лето. Эта книга рассказывает о том, какие события в истории науки привели к началу этого лета, о современных технологиях ИИ и их возможностях, а также пытается приоткрыть завесу, скрывающую от нас мир ближайшего будущего.
Мифы и заблуждения об искусственном интеллекте, страхи, насущные проблемы, перспективные направления исследований — обо всём этом вы узнаете из «Большой книги искусственного интеллекта».

Перейти на страницу:
L., Zhou X., Koura P. S., O'Horo B., Wang J., Zettlemoyer L., Diab M., Kozareva Z., Stoyanov V. (2021). Efficient Large Scale Language Modeling with Mixtures of Experts // https://arxiv.org/abs/2112.10684

2614

Schreiner M. (2023). GPT-4 architecture, datasets, costs and more leaked. / The Decoder, Jul. 11, 2023. // https://the-decoder.com/gpt-4-architecture-datasets-costs-and-more-leaked/

2615

Zeng W., Ren X., Su T., Wang H., Liao Y., Wang Z., Jiang X., Yang Z., Wang K., Zhang X., Li C., Gong Z., Yao Y., Huang X., Wang J., Yu J., Guo Q., Yu Y., Zhang Y., Wang J., Tao H., Yan D., Yi Z., Peng F., Jiang F., Zhang H., Deng L., Zhang Y., Lin Z., Zhang C., Zhang S., Guo M., Gu S., Fan G., Wang Y., Jin X., Liu Q., Tian Y. (2021). PanGu-α: Large-scale Autoregressive Pretrained Chinese Language Models with Auto-parallel Computation // https://arxiv.org/abs/2104.12369

2616

Du C. (2021). Chinese AI lab challenges Google, OpenAI with a model of 1.75 trillion parameters / PingWest, June 1, 2021 // https://en.pingwest.com/a/8693

2617

Lin J., Yang A., Bai J., Zhou C., Jiang L., Jia X., Wang A., Zhang J., Li Y., Lin W., Zhou J., Yang H. (2021). M6-10T: A Sharing-Delinking Paradigm for Efficient Multi-Trillion Parameter Pretraining // https://arxiv.org/abs/2110.03888

2618

Ma Z., He J., Qiu J., Cao H., Wang Y., Sun Z., Zheng L., Wang H., Tang S., Zheng T., Lin J., Feng G., Huang Z., Gao J., Zeng A., Zhang J., Zhong R., Shi T., Liu S., Zheng W., Tang J., Yang H., Liu X., Zhai J., Chen W. (2022). BaGuaLu: targeting brain scale pretrained models with over 37 million cores // PPoPP '22: Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 192–204. // https://doi.org/10.1145/3503221.3508417

2619

* BaGuaLu (八卦炉), печь восьми триграмм (восьми гуа), волшебная печь из древнекитайской мифологии, позволяющая создавать эффективные лекарства. Восемь триграмм гуа используются в даосской космологии, чтобы представить фундаментальные принципы бытия.

2620

Lin J., Men R., Yang A., Zhou C., Ding M., Zhang Y., Wang P., Wang A., Jiang L., Jia X., Zhang J., Zhang J., Zou X., Li Z., Deng X., Liu J., Xue J., Zhou H., Ma J., Yu J., Li Y., Lin W., Zhou J., Tang J., Yang H. (2021). M6: A Chinese Multimodal Pretrainer // https://arxiv.org/abs/2103.00823

2621

Kharya P., Alvi A. (2021). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, the World’s Largest and Most Powerful Generative Language Model / Nvidia Developer Blog, Oct 11, 2021 // https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

2622

Smith S., Patwary M., Norick B., LeGresley P., Rajbhandari S., Casper J., Liu Z., Prabhumoye S., Zerveas G., Korthikanti V., Zhang E., Child R., Aminabadi R. Y., Bernauer J., Song X., Shoeybi M., He Y., Houston M., Tiwary S., Catanzaro B. (2022). Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model // https://arxiv.org/abs/2201.11990

2623

Almazrouei E., Alobeidli H., Alshamsi A., Cappelli A., Cojocaru R., Alhammadi M., Mazzotta D., Heslow D., Launay J., Malartic Q., Noune B., Pannier B., Penedo G. (2023). The Falcon Series of Language Models: Towards Open Frontier Models // https://huggingface.co/tiiuae/falcon-180B

2624

Le Scao T., Fan A., Akiki C., Pavlick E., Ilić S., Hesslow D., Castagné R., Luccioni A. S., Yvon F., Gallé M., Tow J., Rush A. M., Biderman S., Webson A., Ammanamanchi P. S., Wang T., Sagot B., Muennighoff N., Moral A. V. d., Ruwase O., Bawden R., Bekman S., McMillan-Major A., Beltagy I., Nguyen H., Saulnier L., Tan S., Suarez P. O., Sanh V., Laurençon H., Jernite Y., Launay J., Mitchell M., Raffel C., Gokaslan A., Simhi A., Soroa A., Aji A. F., Alfassy A., Rogers A., Nitzav A. K., Xu C., Mou C., Emezue C., Klamm C., Leong C., Strien D. v., Adelani D. I., Radev D., Ponferrada E. G., Levkovizh E., Kim E., Natan E. B., Toni F. D., Dupont G., Kruszewski G., Pistilli G., Elsahar H., Benyamina H., Tran H., Yu I., Abdulmumin I., Johnson I., Gonzalez-Dios I., Rosa J. d. l., Chim J., Dodge J., Zhu J., Chang J., Frohberg J., Tobing J., Bhattacharjee J., Almubarak K., Chen K., Lo K., Von Werra L., Weber L., Phan L., allal L. B., Tanguy L., Dey M., Muñoz M. R., Masoud M., Grandury M., Šaško M., Huang M., Coavoux M., Singh M., Jiang M. T., Vu M. C., Jauhar M. A., Ghaleb M., Subramani N., Kassner N., Khamis N., Nguyen O., Espejel O., Gibert O. d., Villegas P., Henderson P., Colombo P., Amuok P., Lhoest Q., Harliman R., Bommasani R., López R. L., Ribeiro R., Osei S., Pyysalo S., Nagel S., Bose S., Muhammad S. H., Sharma S., Longpre S., Nikpoor S., Silberberg S., Pai S., Zink S., Torrent T. T., Schick T., Thrush T., Danchev V., Nikoulina V., Laippala V., Lepercq V., Prabhu V., Alyafeai Z., Talat Z., Raja A., Heinzerling B., Si C., Taşar D. E., Salesky E., Mielke S. J., Lee W. Y., Sharma A., Santilli A., Chaffin A., Stiegler A., Datta D., Szczechla E., Chhablani G., Wang H., Pandey H., Strobelt H., Fries J. A., Rozen J., Gao L., Sutawika L., Bari M. S., Al-shaibani M. S., Manica M., Nayak N., Teehan R., Albanie S., Shen S., Ben-David S., Bach S. H., Kim T., Bers T., Fevry T., Neeraj T., Thakker U., Raunak V., Tang X., Yong Z., Sun Z., Brody S., Uri Y., Tojarieh H., Roberts A., Chung H. W., Tae J., Phang J., Press O., Li C., Narayanan D., Bourfoune H., Casper J., Rasley J., Ryabinin M., Mishra M., Zhang M., Shoeybi M., Peyrounette M., Patry N., Tazi N., Sanseviero O., von Platen P., Cornette P., Lavallée P. F., Lacroix R., Rajbhandari S., Gandhi S., Smith S., Requena

Перейти на страницу:
Комментарии (0)