Марк Руссинович - 3.Внутреннее устройство Windows (гл. 8-11)
• Прямой ввод-вывод (direct I/O) Создавая IRP, диспетчер ввода-вывода блокирует пользовательский буфер в памяти (делает его неподкачиваемым). Закончив работу с IRP, диспетчер ввода-вывода разблокирует буфер. Диспетчер хранит описание этой памяти в форме MDL (memory descriptor list). MDL указывает объем физической памяти, занятой буфером (подробнее о MDL см. Windows DDK). Устройствам, использующим DMA (прямой доступ к памяти), требуется лишь физическое описание буфера, поэтому таким устройствам достаточно MDL. (Устройства, поддерживающие DMA, передают данные в память компьютера напрямую, не используя процессор.) Ho, если драйверу нужен доступ к содержимому буфера, он может спроецировать его на системное адресное пространство.
• Ввод-вывод без управления (neither I/O) Диспетчер ввода-вывода не участвует в управлении буферами. Ответственность за управление ими возлагается на драйвер устройства.
При любом типе управления буферами диспетчер ввода-вывода помещает в IRP ссылки на буферы ввода и вывода. Тип управления буферами, реализуемого диспетчером ввода-вывода, зависит от типа управления, запрошенного драйвером для операций конкретного типа. Драйвер регистрирует нужный ему тип управления буферами для операций чтения и записи в объекте «устройство», который представляет устройство. Операции управления вводом-выводом на устройстве (выполняемые NtDeviceIoControlFile) задаются определенными в драйвере управляющими кодами ввода-вывода. Управляющий код включает тип управления буферами со стороны диспетчера ввода-вывода при обработке IRP с данным кодом.
Когда вызывающие потоки передают запросы размером менее одной страницы (4 Кб на х86-процессорах), драйверы, как правило, используют буферизованный ввод-вывод, а для запросов большего размера — прямой. Буфер примерно равен размеру страницы, и операция копирования с применением буферизованного ввода-вывода приводит практически к тем же издержкам, что и прямой ввод-вывод, требующий блокирования памяти. Драйверы файловой системы обычно используют третий тип управления, так как при копировании данных из кэша файловой системы в буфер вызывающего потока это позволяет избавиться от издержек, связанных с управлением буферами. Ho большинство драйверов не использует этот вид управления из-за того, что указатель на буфер вызывающего потока действителен лишь на то время, пока выполняется этот поток. Если драйверу нужно передать данные с устройства (или на устройство) при выполнении DPC-процедуры или ISR, он должен позаботиться о доступности данных вызывающего потока из контекста любого процесса, а значит, у буфера должен быть системный виртуальный адрес.
Драйверы, использующие ввод-вывод без управления для доступа к буферам, которые могут быть расположены в пользовательском пространстве, должны проверять, что адреса буфера действительны и не ссылаются на память режима ядра. Если они этого не делают, появляется вероятность краха системы или уязвимости в системе защиты, так как приложения получают доступ к памяти режима ядра или возможность внедрения своего кода в ядро. Функции ProbeForRead и ProbeForWrite, которые ядро предоставляет драйверам, проверяют, полностью ли умещается буфер в пользовательской части адресного пространства. Чтобы избежать краха из-за ссылки на недопустимый адрес, драйверы могут обращаться к буферам пользовательского режима из кода обработки исключений (блоков try/except), который перехватывает любые попытки доступа по неправильным адресам и транслирует их в коды ошибок для передачи приложению.
Запрос ввода-вывода к одноуровневому драйверуB этом разделе вы увидите, как обрабатывается запрос синхронного ввода-вывода к одноуровневому драйверу режима ядра. Такая обработка проходит в семь этапов.
1. Запрос на ввод-вывод передается через DLL подсистемы.
2. DLL подсистемы вызывает сервис NtWriteFile диспетчера ввода-вывода.
3. Диспетчер ввода-вывода создает IRP, описывающий запрос, и посылает его драйверу (в данном случае — драйверу устройства), вызывая свою функцию IoCallDriver.
4. Драйвер передает данные из IRP на устройство и инициирует операцию ввода-вывода.
5. Драйвер уведомляет о завершении ввода-вывода, генерируя прерывание.
6. Когда устройство завершает операцию и вызывает прерывание, драйвер устройства обслуживает прерывание.
7. Драйвер вызывает функцию IoCompleteRequest диспетчера ввода-вывода, чтобы уведомить его о завершении обработки IRP, и диспетчер ввода-вывода завершает данный запрос на ввод-вывод.
Эти семь этапов показаны на рис. 9-10.
Теперь, когда мы знаем, как инициируется ввод-вывод, рассмотрим обслуживание прерывания и завершение ввода-вывода.
Обслуживание прерыванияЗавершая передачу данных, устройство генерирует прерывание, после чего в дело вступают ядро Windows, диспетчер ввода-вывода и драйвер устройства. Ha рис. 9-11 показана первая фаза этого процесса. (Механизм диспетчеризации прерываний, включая DPC, описывается в главе 3. Мы кратко повторяем этот материал, потому что DPC играют ключевую роль в обработке ввода-вывода.)
Когда устройство генерирует прерывание, процессор передает управление обработчику ловушки ядра, который находит ISR для этого устройства по таблице диспетчеризации прерываний. ISR в Windows обычно обрабатывают прерывания от устройств в два этапа. При первом вызове ISR, как правило, остается на уровне Device IRQL ровно столько времени, сколько нужно для того, чтобы сохранить состояние устройства и запретить дальнейшие прерывания от него. После этого ISR помещает DPC в очередь и, закрыв прерывание, завершается. Впоследствии, при вызове DPC-процедуры драйвер устройства заканчивает обработку прерывания, а затем вызывает диспетчер ввода-вывода для завершения ввода-вывода и удаления IRR Этот драйвер также может начать выполнение следующего запроса ввода-вывода, ждущего в очереди устройства.
Преимущество выполнения большей части обработки прерываний от устройств через DPC в том, что это разрешает любые блокируемые прерывания с приоритетами от «Device IRQL» до «DPC/dispatch» — пока не началась обработка DPC, имеющего более низкий приоритет. A за счет этого удается более оперативно (чем это могло бы быть в ином случае) обслуживать прерывания среднего приоритета. Вторая фаза ввода-вывода (обработка DPC) показана на рис. 9-12.
Завершение обработки запроса на ввод-выводПосле того как DPC-процедура драйвера выполнена, до завершения запроса на ввод-вывод остается проделать кое-какую оставшуюся работу. Третья стадия обработки ввода-вывода называется завершением ввода-вывода (I/O completion) и начинается с вызова драйвером функции IoСотрleteRequest для уведомления диспетчера ввода-вывода о том, что обработка запроса, указанного в IRP (и принадлежащих ему блоках стека), закончена. Действия, выполняемые на этом этапе, различны для разных операций ввода-вывода. Например, все сервисы ввода-вывода записывают результат операции в блок статуса ввода-вывода (I/O status block) — структуру данных, предоставляемую вызывающим потоком. Некоторые сервисы, выполняющие буферизованный ввод-вывод, требуют возврата данных вызывающему потоку через подсистему ввода-вывода.
B любом случае подсистема ввода-вывода должна копировать отдельные данные из системной памяти в виртуальное адресное пространство процесса, которому принадлежит вызывающий поток. Если IRP выполняется синхронно, это адресное пространство является текущим и доступно напрямую, но если IRP обрабатывается асинхронно, диспетчер ввода-вывода должен отложить завершение IRP до тех пор, пока у него не появится возможность обращаться к нужному адресному пространству. Чтобы получить доступ к виртуальному адресному пространству процесса, которому принадлежит вызывающий поток, диспетчер ввода-вывода должен передавать данные «в контексте вызывающего потока», т. е. при выполнении этого потока (иначе говоря, процесс этого потока должен быть текущим, а его адресное пространство — активным на процессоре). Эту задачу диспетчер ввода-вывода решает, ставя в очередь данному потоку APC режима ядра (рис. 9-13).
Как уже говорилось в главе 3, APC выполняется только в контексте определенного потока, a DPC — в контексте любого потока. Это означает, что DPC не затрагивает адресное пространство процесса пользовательского режима. Вспомните также, что приоритет программного прерывания у DPC выше, чем у APC
B следующий раз, когда поток начинает выполняться при низком IRQL, ему доставляется отложенный APC Ядро передает управление АРС-процедуpe диспетчера ввода-вывода, которая копирует данные (если они есть) и код возврата в адресное пространство процесса вызывающего потока, освобождает IRP, представляющий данную операцию ввода-вывода, и переводит описатель файла (и любое событие или порт завершения ввода-вывода, если таковой объект предоставлен вызывающим потоком) в свободное состояние. Теперь ввод-вывод считается завершенным. Вызывающий поток или любые другие потоки, ждущие на описателе файла (или иного объекта), выходят из состояния ожидания и переходят в состояние готовности к выполнению. Вторая фаза завершения ввода-вывода показана на рис. 9-14.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Марк Руссинович - 3.Внутреннее устройство Windows (гл. 8-11), относящееся к жанру Прочая околокомпьютерная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


