Компьютерра - Компьютерра PDA N58 (18.09.2010-24.09.2010)
- Это же не проверено экспериментально, откуда вы тогда знаете, что там, в сингулярности, уравнения перестают работать?
Совершенно верно. Какова, действительно, ситуация? У нас есть в качестве стандартной модели Общая теория относительности. Мы знаем, где она работает, более того, мы не знаем, где она не работает в доступной для наблюдения области. Мы можем посчитать, как двигаются тела в этой модели. Если модель стандартная, это означает, что не найдены условия, где она заведомо дает ложный результат. Не найдены именно в природе, в эксперименте, а не в теории. Поэтому мы пользуемся уравнениями этой модели и можем просчитывать разные ситуации. Действительно, с экспериментальной точки зрения мы не знаем, как ведут себя уравнения сразу за горизонтом событий, но есть хорошо подкрепленное мнение, что ничего удивительного там не происходит. Конечно, меняется внешний вид падающего в черную дыру тела, на которое гипотетический наблюдатель смотрит со стороны. Но важно то, что мы знаем, как это посчитать. Если мы продолжаем траекторию движения частиц, упавших в черную дыру, дальше, до самого центра, то так или иначе, они попадают в точку с экстремальными параметрами. По уравнениям тела, попавшие за горизонт событий, должны падать в самый центр, туда, где достигается бесконечная плотность. А как только появляется бесконечность, модель перестает работать, и что происходит в центре, мы не знаем. Существующие модели не адекватны для описания условий в центре черной дыры. Конечно, природа должна каким-то образом избегать бесконечных плотностей, но что происходит, мы не знаем, во многом это связано с тем, что у нас нет наблюдательных данных, и любую теорию приходится именно экстраполировать в эту точку и, естественно, происходит расхождение.
- А есть планы или мечты по экспериментальному изучению?
На мой взгляд, в ближайшем времени - нет. Теоретики надеются, что им удастся построить что-то типа квантовой гравитации, модель которой будет учитывать квантовые эффекты для гравитационных полей, и тогда, может быть, проблема сингулярности исчезнет, и можно будет давать конечные предсказания для таких ситуаций. Но подтверждать расчеты экспериментально, в конечном счете, тоже надо, и мне пока трудно представить, как можно проверить условия сингулярности. Сингулярности без горизонта, видимо, не существует, а изучать что-то под горизонтом запрещают законы природы. То есть мы можем слетать и изучить, но не можем передать информацию обратно, в этом и есть определенные сложности.
- Расскажите, пожалуйста, об излучении Хокинга.
Излучение Хокинга - это очень интересное предсказание, еще говорят об испарении черных дыр, которое происходит за счет этого эффекта. Обычно это иллюстрируют таким образом. Вакуум - это не пустое пространство, у него есть энергия, в нем происходят различные интересные процессы, в нем рождаются пары частиц и античастиц, которые потом аннигилируют и исчезают. Такие недолго живущие частицы называются виртуальными. Свойства вакуума как непустой среды, где постоянно бурлят виртуальные частицы, - это наблюдаемый эффект. А если рождение виртуальных частиц начинает происходить близко от горизонта событий, то одна из частиц пары может исчезнуть под горизонтом, и тогда вторая не сможет с ней проаннигилировать. Получается, что из вакуума как бы рождается новая частица. На самом деле, откуда-то энергию надо брать. Предположим, у этого процесса есть наблюдатель. Издалека ему будет казаться, что от черной дыры к нему летят частицы. Мы знаем, что энергия сохраняется, значит, наблюдатель должен решить, что она возникает из черной дыры. А если черная дыра не заряжена и не вращается, у нее есть один-единственный источник энергии - ее масса. Значит, частицы должны рождаться за счет уменьшения массы черной дыры. Она как бы испаряется, как капля воды, молекулы потихонечку из нее улетают.
- А почему она не пополняется извне?
Конечно, в обычных условиях, она как раз пополняется. Представьте, что не было бы никакого излучения Хокинга. Берем черную дыру, помещаем её в реальное межзвездное пространство, межзвездный газ на нее падает, масса черной дыры растет. Так и должно происходить. Плюс всё-таки есть процесс излучения частиц, который существует просто в силу природы черной дыры. Так вот, важно, что именно в конкретной ситуации превалирует. Если речь идет о черной дыре, которая образовалась из массивной звезды, то оказывается, что излучение Хокинга для неё очень слабо, и её масса растет за счет того, что в чёрную дыру попадает межзвездный газ или ещё что-то. Но чем меньше черная дыра, тем важнее излучение Хокинга относительно захвата частиц. Это можно объяснить так: чем меньше черная дыра (пусть она будет сферическая), тем меньше радиус, тем больше кривизна поверхности. Люди жили тысячи лет на Земле, и не знали, что она круглая, потому что ее размер достаточно большой. Нам кажется, что Земля плоская, а если бы ее радиус был не 6 400 км, а 640 км, люди бы всегда знали, что она круглая, потому что, передвигаясь, убедились бы в этом. Так вот, чем меньше радиус, тем больше кривизна, и именно этот параметр важен для излучения Хокинга. Поэтому маленькие черные дыры испарялись бы очень быстро, но где взять маленькие черные дыры? Сейчас они в природе естественным образом не должны возникать. Из звезд сделать маленькие черные дыры нельзя, астероиды никогда не схлопываются, а чтобы на наших глазах черная дыра испарилась, нужна ее начальная масса, как у астероида.
Есть модели, в которых предсказывается, что на самых ранних этапах жизни Вселенной образовывались маленькие черные дыры, и если это так, сейчас они должны активно испаряться из-за излучения Хокинга. Ученые пытаются найти его, это должно быть гамма-излучение. Пока есть только верхние пределы, хорошие кандидаты в первичные черные дыры, которые сейчас испарялись бы, не найдены. Если они будут обнаружены, это станет самым прямым доказательством, что мы имеем дело именно с черными дырами.
- Как черные дыры были обнаружены? Как их наблюдают?
С одной стороны, о черной дыре можно говорить как о физическом объекте, который обладает определенными внутренними свойствами, с другой стороны, можно рассматривать черную дыру как астрономический объект. Астрономия - наука необычная, это единственная естественная наука, где мы не можем прямо экспериментировать, а можем только наблюдать издалека. Поэтому для астрофизика черная дыра - это объект, который выглядит как черная дыра, что, в общем-то, не одно и то же, ведь могут быть настоящие дорогие швейцарские часы, а может быть их дешевая имитация. Так и астрофизикам бывает трудно отличить одно от другого. Поэтому когда ученые говорят о черных дырах, они имеют в виду массивные компактные объекты, которые демонстрируют определенные наблюдательные свойства, например, видимое отсутствие поверхности и малое излучение. Сейчас самая надежная черная дыра - это та, которая находится в центре нашей галактики.
- Надежная в каком смысле?
В том смысле, что это объект, астрофизические свойства которого наиболее близки к тому, что мы думаем о черных дырах. Что мы имеем? Мы имеем объект с массой примерно три-четыре миллиона солнечных масс (это напрямую измерено) с размером, меньшим, чем несколько астрономических единиц, который излучает очень мало. Если мы подумаем, как мы еще можем сделать объект, который при такой большой массе имеет такой маленький размер, и который ничего не излучает, то окажется, что сделать это крайне сложно. Черная дыра - это консервативная гипотеза. Одна из самых важных характеристик черной дыры, повторюсь, это массивность и компактность. Другим способом, без теории черной дыры, таких характеристик достичь очень сложно. Вы, например, можете сказать, что там сидит объект относительно холодный и не светится, но если вы попробуете сделать железный объект такой массы, то ничего не получится, гравитация победит, он схлопнется, и все равно превратится в черную дыру. Если вы будете делать такой объект из звездного вещества, он будет ярко светить, и, перебирая разные варианты из того, что предлагает нам стандартная модель, черная дыра - это единственное, что нам подходит. Мало того, мы видим, как газ течет на этот объект. Он падает в гравитационное поле, разгоняется, и если бы внизу была поверхность, газ бы при ударе об эту стенку нагрелся, и мы увидели бы излучение, но мы его не видим. То есть он действительно падает как в дыру, отчасти отсюда и название. И действительно очень сложно придумать модель, которая бы описала такое явление без привлечения черной дыры. Поэтому можно сказать, что вот так мы и наблюдаем черные дыры.
В центрах других галактик мы видим массивные объекты, и тоже достаточно компактные. Поскольку другие галактики дальше, ограничения на размер менее жесткие, но все равно, если мы знаем, что в центре галактики сидит массивный и компактный объект с массой миллиард солнечных, очень трудно придумать, как еще он мог образоваться. Считается, что это черные дыры. Есть еще черные дыры в двойных звездных системах, это когда одна из двойных звезд превращается в черную дыру.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Компьютерра - Компьютерра PDA N58 (18.09.2010-24.09.2010), относящееся к жанру Прочая околокомпьютерная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


