`
Читать книги » Книги » Компьютеры и Интернет » Прочая околокомпьютерная литература » Коллектив Авторов - Цифровой журнал «Компьютерра» № 198

Коллектив Авторов - Цифровой журнал «Компьютерра» № 198

Перейти на страницу:

Ну, скажем, как сделать снимок цифровым фотоаппаратом. Сейчас же широкие народные массы делают множество цифровых снимков, не только не задумываясь о фотографической широте, но и не зная, что такое выдержка с диафрагмой, и даже не умея наводить на резкость. Всё за них делает автоматика… А системы автоматизации проектирования и производства, CAD и CAM, известны очень давно. Так что, может, просто надо тоже, вслед за техпроцессом, вывести их из заводских стен — благо мощность домашних компьютеров позволяет? 

Современные системы CAD/CAM ориентированы на профессионалов и на стандартные задачи.

Обратимся к статье 2011 года тульских авторов О. В. Епифановой и Д. С. Троицкого «Автоматизация технологической подготовки производства деталей, изготавливаемых на оборудовании с ЧПУ». Они утверждают, что 35% пользователей CAM-систем вынуждены были в 2005–2008 годах использовать не готовые системы автоматизации производства от ведущих поставщиков (среди которых такие гиганты, как Dassault Systemes, Siemens, PTC), а создавать их индивидуально, своими силами или на заказ… «Это свидетельствует о наличии большого количества технологических задач, которые не решаются наиболее распространёнными CAM-средствами». 

Причём речь идёт не о принципиально новой технологии, такой как 3D-печать, а о «классическом машиностроении. О тех технологических процессах, которые были отлажены до совершенства в прошлую, индустриальную эпоху. И о тех инструментах автоматизации производства, которые предлагаются профессиональным инженерам-технологам ведущими производителями. Инструментах весьма дорогих… Но — как рассказано в этой статье — для решения задачи точного позиционирования заготовок для пятикоординатного фрезерования пришлось разрабатывать оригинальное приложение…

CEO PARC Стефан Гувер.

То есть — не получится… Как же быть? И вот за поиск решения взялась фирма PARC, Palo Alto Research Center Incorporated. Та самая легендарная организация, в которой были созданы компьютерная мышка и лазерный принтер, Ethernet и принцип WYSIWYG — то есть тот облик компьютерного мира, который ныне привычен подавляющему большинству людей. Те самые передовые инновации, которые находят массовый платёжеспособный спрос и благодаря этому могут привлекать средства в отрасль. Ну а теперь исследователи из PARR занялись созданием экспертной системы, помогающей пользователям 3D-принтеров.

По словам CEO PARC Стефана Гувера (Stephen Hoover), целью работы является создание программного инструмента, позволяющего людям, которые не являются инженерами-технологами, прокладывать свой собственный путь сквозь пространство конструирования, от первоначального замысла до выдаваемых принтеру инструкций. То есть речь идёт о полноценной экспертной системе, ориентированной на массового пользователя. Системе, знающей ограничения, которые на детали накладывают материал и технология, и отбрасывающей неудачные конструкции на самых ранних этапах работы.

Инженерам классической эпохи в этом помогали опыт и интуиция (расчёты были очень трудоёмки и делались редко). Инструмент от PARC ими не наделён, но предоставляет пользователю ряд конструкторских и технологических программ. Как рассказывает специалист по интерфейсу «человек — машина» Тольга Куртоглу (Tolga Kurtoglu), перешедший в PARC из NASA, производится сравнение предлагаемой для трёхмерной печати конструкции и ограничений, налагаемых материалом и технологией. Сначала отыскиваются и исправляются самые грубые ошибки — например, слишком тонкие слои материала, которые неизбежно деформируются под собственным весом.

Потом осуществляется более сложное моделирование, и выявленные «узкие места» (в прямом и переносном смысле) корректируются путём предложения пользователю решений из стандартных библиотек. Так, шаг за шагом, формируется облик детали, которая будет и технологичной для 3D-печати, и подходящей по геометрическим и прочностным параметрам для возложенной для неё задачи. То есть программный инструмент от PARC готов взять на себя те функции, которые при работе с юным конструктором выполняли опытный технолог и расчётчик-прочнист. И инструмент этот может стать общедоступным, выйдя на массовый рынок трёхмерной печати, делая его ещё более массовым. САПР на базе экспертной системы дома? Так когда то и домашний компьютер казался абсурдом…

К оглавлению

Гиперзвуковой SR-72: скорость как залог неуязвимости

Андрей Васильков

Опубликовано 05 ноября 2013

После долгого периода разработок в атмосфере повышенной секретности в компании Lockheed Martin официально представили программу создания нового гиперзвукового самолёта. На страницах проекта были обнародованы его характеристики и опубликованы первые изображения. 

Летательный аппарат под кодовым названием SR-72 станет прямым наследником легендарного сверхзвукового разведчика Lockheed SR-71 «Blackbird», но будет иметь множество принципиальных отличий.

Концепт гиперзвукового БПЛА Lockheed SR-72 (изображение: lockheedmartin.com).

На каждом этапе развития авиации увеличение скорости и высоты полёта летательных аппаратов меняло представления о современных технических возможностях, стратегических целях и тактике боя. Самолёты с более высоким практическим потолком и преимуществом в скорости становились неуязвимыми для ПВО противника. 

В пятидесятые годы даже появилось выражение «последнее китайское предупреждение», поскольку самолёты ВВС США более восьми тысяч раз безнаказанно вторгались в воздушное пространство Китая, выполняя как разведывательные полёты, так и боевые задачи. Поднебесной оставалось реагировать только по дипломатическим каналам, направляя в посольство США очередную ноту протеста.

Помимо количественных улучшений в характеристиках самолётов, происходили и качественные, обычно связанные с освоением новых режимов полёта. Чарльз Йегер (Charles Elwood Yeager) на экспериментальном самолёте Bell X-1 в октябре 1947 года разделил историю авиации на эры дозвуковых и сверхзвуковых полётов.

Bell X-1A — первый самолёт, преодолевший звуковой барьер (фото: militaryphotos.net).

С тех пор скорость летательных аппаратов всё чаще стали не только выражать в привычных километрах или милях в час, но и сравнивать со скоростью звука, представляя в кратности числу Маха. Эта величина зависит от плотности воздуха, его температуры и влажности, а во время полёта главным образом определяется его высотой. Если на предельно малых высотах скорость звука в воздухе составляет примерно 1 225 км/ч, то на 11 тысячах метров её абсолютное значение снижается до 1 060 км/ч.

Со времени первого полёта братьев Райт на скорости 11 км/ч до преодоления Чаком Йегером звукового барьера прошло сорок четыре года. Переход на сверхзвуковые скорости затянулся, поскольку потребовал от конструкторов решения совершенно новых задач. Преодоление звукового барьера было сопряжено с резким увеличением аэродинамического сопротивления, повышением нагрева обшивки и снижением управляемости.

Устранение этих проблем навсегда изменило облик современных самолётов, и всего за шесть последующих лет скорость звука удалось превысить вдвое. Впервые разогнаться быстрее 2 M удалось Альберту Скотту Кроссфилду (Albert Scott Crossfield) 20 ноября 1953 года на экспериментальном самолёте Douglas Skyrocket D-558-2. 

Самолёт D-558-2, впервые преодолевший двойную скорость звука (фото: G. Verver / flickr.com).

Дальнейшее наращивание скорости летательных аппаратов уже не приносило значимых сюрпризов. Сверхзвуковые режимы полёта оставались предсказуемыми вплоть до скоростей в 3 М. Полёты в стратосфере на более высоких скоростях пока были единичными.

Ещё в феврале 1964 года самолет А-12 на высоте 25 298 метров достиг скорости 3,2 М и удерживал её десять минут в режиме горизонтального полёта. Достижение не было признано FAI, а в качестве официального мирового рекорда записали другой результат, полученный спустя год на более совершенной модификации перспективного самолёта. 1 мая 1965 года экипаж Роберта Стивенса (Robert Stephens) и Даниэла Андрэ (Daniel Andre) на самолёте YF-12A достиг скорости 3 331,5 км/ч на высоте 24 463 м.

Предшественник SR-72 — самый быстрый в мире сверхзвуковой самолёт Lockheed SR-71 (фото: codeonemagazine.com).

Абсолютный рекорд скорости управляемого горизонтального полёта до сих пор принадлежит стратегическому высотному разведчику SR-71. 28 июля 1976 года Элдон Джоерс (Eldon Joersz) и Джорж Морган (George Morgan) достигли на нём скорости 3 529 км/ч, в 3,3 раза превысив скорость звука.

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Коллектив Авторов - Цифровой журнал «Компьютерра» № 198, относящееся к жанру Прочая околокомпьютерная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)