Читать книги » Книги » Компьютеры и Интернет » Прочая околокомпьютерная литература » Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич

Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич

Читать книгу Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич, Марков Сергей Николаевич . Жанр: Прочая околокомпьютерная литература.
Охота на электроовец. Большая книга искусственного интеллекта - Марков Сергей Николаевич
Название: Охота на электроовец. Большая книга искусственного интеллекта
Дата добавления: 8 ноябрь 2025
Количество просмотров: 23
(18+) Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних просмотр данного контента СТРОГО ЗАПРЕЩЕН! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту для удаления материала.
Читать онлайн

Охота на электроовец. Большая книга искусственного интеллекта читать книгу онлайн

Охота на электроовец. Большая книга искусственного интеллекта - читать онлайн , автор Марков Сергей Николаевич

Новый этап в области компьютерных технологий часто называют очередной «весной искусственного интеллекта». Её начало обычно отсчитывают с момента появления нейронной сети, сегодня известной под названием AlexNet, успех которой в распознавании зрительных образов возвестил о начале «революции глубокого обучения». В результате этой революции машинам удалось превзойти человеческий уровень при решении множества задач. Сегодня уже мало кого удивляют победы машин над сильнейшими игроками в го, создание ими музыки и картин, предсказание нейронными сетями пространственной структуры белков и другие вещи, которые десять лет назад мы посчитали бы чудесами. Алгоритмы искусственного интеллекта (ИИ) быстро вошли в нашу жизнь и стали её неотъемлемой частью. Например, каждый раз, когда вы делаете фотографию при помощи смартфона, её обработку выполняет нейронная сеть.

На смену весне искусственного интеллекта приходит лето. Эта книга рассказывает о том, какие события в истории науки привели к началу этого лета, о современных технологиях ИИ и их возможностях, а также пытается приоткрыть завесу, скрывающую от нас мир ближайшего будущего.

Мифы и заблуждения об искусственном интеллекте, страхи, насущные проблемы, перспективные направления исследований — обо всём этом вы узнаете из «Большой книги искусственного интеллекта».

Перейти на страницу:

При помощи капиллярного электрометра Готч в 1899 г. обнаружил явление, получившее название «рефракторного периода». Он заметил, что нервные импульсы не могут следовать один за другим без паузы — между разрядами должен быть небольшой интервал времени. Несмотря на этот успех, чувствительности капиллярного электрометра явно не хватало для точного измерения величины и продолжительности нервного импульса, а также интервалов между последовательными импульсами. Искажения были связаны, в частности, с тем, что ртуть продолжала двигаться по инерции уже после прекращения действия раздражителя.

В начале XX в. у нейрофизиологов появился более чувствительный инструмент — струнный гальванометр. Это устройство было детищем Виллема Эйнтховена, заведующего кафедрой физиологии в Лейденском университете в Нидерландах. В основу прибора было положено следующее наблюдение: небольшой меняющийся ток может заставить очень тонкую проволоку («струну») вибрировать, если она находится в сильном магнитном поле. Изготовление первого струнного гальванометра заняло несколько лет и было завершено в 1901 г. Прибор весил несколько тонн, занимал целую комнату, а для электромагнита пришлось создать систему водяного охлаждения. Однако гальванометр работал достаточно точно, чтобы обеспечить потребности кардиологии того времени. Таким образом, Эйнтховен фактически стал основоположником электрокардиографии, а в 1924 г. за своё изобретение и открытия в области сердечных ритмов он был удостоен Нобелевской премии[968].

Теперь, имея перед мысленным взором картину техники, с которой приходилось работать нейрофизиологам в начале XX в., можно вернуться к деятельности Бергера. С 1910 г. он переключается на использование струнных гальванометров: сначала работает с конструкцией Эйнтховена, а затем с различными версиями гальванометра Эдельмана[969], в которых в целях повышения чувствительности прибора серебряные электроды вводились под кожу головы испытуемого[970].

6 июля 1924 г. небольшой струнный гальванометр Эдельмана показал колебания, предположительно исходящие от мозга, — так была получена первая электроэнцефалограмма[971] человека. Первые человеческие электроэнцефалограммы представляли собой записи активности мозга самого Бергера, его сына Клауса и пациентов с различными повреждениями черепа. В 1925 г. Бергер пришёл к выводу, что дефекты черепа необязательно являются преимуществом при получении записи (из-за утолщения твёрдой мозговой оболочки, послеоперационных спаек и т. д.) и что записи могут быть сделаны столь же хорошо (или даже лучше) и без повреждения кожи головы[972].

С 1926 г. Бергер начинает использовать более мощный гальванометр Сименса с двойной катушкой (обладавший огромной по тем временам чувствительностью — 130 мкВ/см), что позволяет учёному окончательно отказаться от введения электродов под кожу и перейти к использованию электродов из серебряной фольги, прикреплённых к голове при помощи резинового бандажа[973].

В первом докладе Бергера 1929 г. продемонстрированы электроэнцефалограммы людей, выполненные как при помощи игольчатых электродов, так и неинвазивным методом. Записи были сделаны на фотобумаге и имели продолжительность от одной до трёх минут.

Рис. 78. Пример электроэнцефалограммы из доклада Бергера

Между 1926 и 1929 гг. Бергер получил хорошие записи альфа-волн[974]. Ранние данные часто были несовершенными, и в 1928 г. Бергер всё ещё сомневался в достоверности своих наблюдений. Первый отчёт 1929 г. показывает существование альфа-ритма и реакцию альфа-блокировки, а также описание меньших бета-волн. В отчёте Бергер указывает на недостатки работ предшественников и демонстрирует исключительную скрупулёзность в деле отсеивания посторонних источников сигнала[975], [976].

Более поздние отчёты Бергера, выходившие в 1930-е гг., содержали настоящие жемчужины: исследования флуктуаций сознания, первые электроэнцефалограммы, выполненные во время сна, исследование влияния гипоксии (кислородного голодания) на мозг человека, исследование различных мозговых расстройств и даже догадки о наличии пароксизмальных разрядов[977] при эпилептических приступах.

В конце 1930-х гг. у Бергера развивается серьёзная депрессия, которая приводит к самоубийству учёного 1 июня 1941 г. По мнению некоторых биографов Бергера, одной из причин этого — помимо затяжного заболевания, похожего по симптомам на грипп, — могло стать соперничество с группой учёных из Института исследований мозга в Берлине, которой руководил Алоис Корнмюллер. У последнего предположительно были связи в правительственных учреждениях в Берлине, и тревожный и мнительный Бергер боялся, что его открытия будут отобраны более агрессивными коллегами. Другие исследователи часто приводят в качестве главного источника депрессии Бергера его неважные отношения с нацистским режимом, указывая, например, в качестве довода перевод его на должность заслуженного профессора [Professor Emeritus] в 1938 г.[978] Однако последние исследования говорят о том, что отношения Бергера с нацистами, возможно, не были столь уж плохими[979], [980].

В своей книге «Душа» (Psyche), написанной за год до смерти, Бергер вновь обращается к проблеме экстрасенсорного восприятия, оценивая способность электроволновой модели объяснить этот феномен и приходя к неизбежному выводу о том, что электромагнитная экстрасенсорика вряд ли возможна. Электромагнитные волны, испускаемые мозгом, слишком слабы для того, чтобы преодолевать сколь-нибудь значимое расстояние по воздуху[981]. Таким образом, результатом многолетних исследований Бергера стало крушение его первоначальных надежд. Однако он, будучи добросовестным исследователем, не стал предаваться самообману. Подобно средневековым алхимикам, получившим ценные для науки результаты в попытках достичь иллюзорной цели, Бергер обогатил современную науку и медицину ценными знаниями и инструментами.

4.2.3 Первые математические модели нейрона — Хорвег, Вейс и Лапик

Итак, первые шаги в изучении электрической активности нервной системы были сделаны. Однако для того, чтобы приблизиться к возможности создания устройства, симулирующего работу мозга, нужно было идти дальше. И важной задачей, стоявшей перед исследователями, было изучение физических характеристик отдельных строительных кирпичиков мозга — нейронов и их отростков — аксонов и дендритов. Нервные волокна, пронизывающие тело человека и других животных, как раз и есть не что иное, как длинные отростки нейронов, покрытые глиальными оболочками.

Нейроглия, или просто глия (от др.-греч. γλία — клей), — это совокупность вспомогательных клеток нервной ткани, составляющих около 40% объёма центральной нервной системы. Глия состоит из различных типов клеток, выполняющих различные функции. Например, олигодендроциты формируют оболочки, окружающие тела нейронов, и выполняют изолирующую и опорную функции. Эти оболочки и называют глиальными.

Ещё со времён Гальвани было известно, что нервы возбуждаются под воздействием электричества. Но каковы должны быть параметры этого воздействия? Как успех стимуляции нерва зависит от силы и продолжительности импульса электрического тока и какие биофизические процессы лежат в основе этой зависимости?

Перейти на страницу:
Комментарии (0)