Компьютерра - Журнал «Компьютерра» № 13 от 04 апреля 2006 года
Все промежуточные операции должны были выполняться с действительными числами высокой (в сравнении с предшествующими моделями GPU) точности. А производители сразу ввели поддержку текстур, в которых цвета хранятся также в виде действительных чисел.
Хотя позже появляются и другие модификации стандарта, включая последний на сегодняшний день Shader Model 3.0, шейдеры второй версии остаются по-прежнему актуальными, потому что платы, поддерживающие только их, присутствуют на рынке и сегодня. Особенности стандартов приведены в таблице 1.
Как только число инструкций в программе достигло десятков, пользоваться ассемблером стало не так удобно. Поэтому к тому же времени формируются специализированные C-подобные языки высокого уровня. Заслуживают упоминания как минимум три из них: cg от nVidia, HLSL из DirectX и GLSL из OpenGL. Все они очень похожи, но, к сожалению, отличаются лексическими и синтаксическими деталями. Их компиляторы к сегодняшнему дню стали довольно зрелыми, способны оптимизировать код, хотя небольшая вероятность наткнуться на неправильно скомпилированный шейдер еще остается. Отказываться от высокоуровневых языков сейчас приходится лишь в исключительных случаях, например, чтобы уложиться в лимит регистров или инструкций.
Достоинства графических чипов: высокая производительность, точность и достаточная простота программирования не могли не быть замеченными, в первую очередь университетами. В 2003 году наблюдается всплеск научных статей, посвященных алгоритмам и принципам расчетов общего назначения средствами графических плат (GPGPU[GPGPU — General-Purpose Computation on GPUs]). С 2004 года специально организуются научные конференции.
В этой связи любопытно поведение двух крупнейших игроков на рынке графических чипов. Если aTI, по-видимому, заняла выжидательную, консервативную позицию: «GPU нужен только для игр», то nVidia, наоборот, проявляет заметную активность. Она пропагандирует идею GPGPU, организует курсы, призывая исследователей пользоваться ее аппаратурой для неграфических вычислений[gpgpu.org/s2005], предоставляет им временную или постоянную работу. Под эгидой nVidia издано уже два бестселлера «GPU Gems»[developer.nvidia.com/object, developer.nvidia.com/object/gpu_gems_2_home.html], в которые вошли главы по вычислениям общего назначения. С 2002 года сотрудники фирмы ведут сайт gpgpu.org, пытающийся систематизировать все результаты в этой области. nVidia продает ряд продуктов для нужд киноиндустрии, на деле доказывая нешуточность идеи.
Каковы результаты этой активности? Судя по публикациям, GPU удается найти применение в самых различных областях высокопроизводительных вычислений, включая высококачественный рендеринг, трассировку лучей, обработку изображений и сигналов, машинное зрение, компрессию, поиск и сортировку, биоинформатику, решение систем линейных уравнений, моделирование физических эффектов. Достигаемое ускорение колеблется от случая к случаю, но типично составляет несколько крат по сравнению с расчетом на центральном процессоре. Вы спросите, отчего же CPU так катастрофически проигрывают, если они изготовляются на таких же, если не на лучших полупроводниковых фабриках, содержат сопоставимое число транзисторов[Буквально одно сравнение high-end-продуктов в подтверждение: 376 млн. транзисторов в двухъядерном Intel Pentium EE 955 против 384 млн. в ATI Radeon X1900XTX], а их рабочие частоты в разы выше, чем у GPU?
GPU против СPUОдно арифметическое устройство, оперирующее числами с плавающей точкой, при современном технологическом процессе производства чипов занимает на кристалле меньше одного квадратного миллиметра[Эти и последующие числа раздела взяты из книги «GPU Gems 2»]. Поэтому во всем чипе их можно иметь сотни, но проблема не в количестве устройств, а в том, как их все загрузить работой. К сожалению, на этом пути есть препятствия.
В первую очередь — память. По закону Мура, каждый год количество транзисторов на чипе возрастает наполовину, возрастает (но медленнее) и скорость их работы, так что суммарно можно говорить примерно о семидесятипроцентном повышении теоретической производительности устройств. Почему теоретической? Да потому, что пропускная способность памяти ежегодно возрастает примерно на 25%, а ее латентность (задержка обращения к новому участку памяти) сокращается и того медленнее — всего на 5% в год. Поэтому если не предпринимать дополнительных усилий, то самое слабое звено и будет определять производительность всей системы.
Центральный процессор обеспечивает просто райские условия для разработчика: любая инструкция в программе может считать или записать произвольную ячейку большой оперативной памяти. На деле это выливается в совершенно нерегулярный набор обращений к памяти. И чтобы ее латентность не была столь критической, в процессор приходится встраивать быструю кэш-память. И встраивать много — кэш сейчас занимает не меньше половины площади кристалла, а значит, ее не занимают вычислительные блоки. Причем во многих сценариях большой кэш оказывается неэффективен, к примеру, если обращение к ячейке памяти происходит лишь единожды, как при обработке потоков.
Второй важной причиной является последовательный характер обычных программ — наборов инструкций, которые для получения желаемого результата должны выполняться друг за другом. Если одна инструкция задержится медленной памятью, то задержится исполнение и всех остальных. Конечно, не все инструкции являются зависимыми и поэтому могут выполняться одновременно. Но явно эта независимость в программе не отражена, так что на выявление скрытого параллелизма тратится другая заметная порция площади кристалла. В самом лучшем случае удается наскрести работу для считанных единиц исполнительных устройств.
Как же эти проблемы решаются в GPU? При описании графического конвейера неоднократно подчеркивалось, что внутри каждого блока конвейера выполняются независимые действия: вершины обрабатываются независимо одна от другой, аналогичное утверждение справедливо для треугольников и т. д. Поэтому не только отдельные этапы конвейера функционируют одновременно, но и на каждом этапе идет параллельная обработка. В этом смысле внутри GPU выделяются наборы вершинных и пиксельных процессоров (рис. 2). Для обеспечения произвольного порядка обработки фрагментов текстура, в которую выполняется рисование, не может в то же самое время использоваться и для выборки, то есть видеопамять делится на непересекающиеся участки только-для-чтения и только-для-записи. Также не могут совпадать обновляемые точки в целевой структуре, поскольку итоговое положение каждого фрагмента фиксируется еще на этапе растеризации. Этими ограничениями достигается достаточное свойство параллельности пиксельных процессоров. Теперь, несмотря на то что каждый шейдер — это последовательная программа, при задержке обращения к памяти при обработке одного фрагмента GPU может не простаивать, а переключиться на другой фрагмент — кандидатов всегда достаточно. Имеются и элементы явного параллелизма в шейдерах: каждая ассемблерная инструкция может выполнять операцию не со скалярами, а сразу с четырехэлементными векторами[Число четыре возникло не случайно — именно такова размерность гомогенного пространства, и таково число компонентов в полупрозрачной цветной текстуре. Векторными операциями можно не пользоваться, но тогда эффективность GPU резко снижается], есть комбинированная инструкция умножь-затем-прибавь.
Без ячеек памяти, которые можно и считывать, и записывать, совсем обойтись, конечно, нельзя. Каждому шейдеру для этой цели предоставляются регистры, их мало (табл. 1), приходится экономить, но благодаря этому все промежуточные вычисления ведутся без обращения к внешней памяти, куда попадает лишь финальный результат. Малый размер шейдера и его общность для всех фрагментов преследуют ту же цель — хранить код программы не в памяти, а внутри процессора. Ведется последовательная политика, включающая разъяснительные мероприятия среди разработчиков, увеличения количества арифметических операций между последовательными обращениями к памяти.
Сосредоточение силыВо всем конвейере главными претендентами для выполнения неграфических расчетов, безусловно, являются вершинные и пиксельные процессоры. Рассмотрим для примера плату GeForce 6800 Ultra. В ней имеется шесть вершинных процессоров, каждый из которых способен за такт выполнять максимум две арифметические операции над четырехэлементными векторами, а также шестнадцать пиксельных процессоров, способных на три векторные операции за такт. Умножая на частоту чипа 425 МГц, получаем верхнюю оценку производительности в 100 Гфлопс. Проделав те же выкладки для новейшей GeForce 7900 GTX, имеющей уже восемь вершинных и двадцать четыре пиксельных процессора и функционирующей на частоте 650 МГц, получаем почти 230 Гфлопс.
Можно задействовать и другие участки конвейера. Если в пиксельном шейдере нужно вычислять некоторую линейную[Есть еще сферические и кубические текстуры, но их ценность для целей данной статьи сомнительна] функцию координаты, то можно перенести эту работу на этап растеризации, задав значения функции только в углах треугольника.
Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Компьютерра - Журнал «Компьютерра» № 13 от 04 апреля 2006 года, относящееся к жанру Прочая околокомпьютерная литература. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.


