`
Читать книги » Книги » Компьютеры и Интернет » Компьютерное "железо" » А. Красько - Схемотехника аналоговых электронных устройств

А. Красько - Схемотехника аналоговых электронных устройств

Перейти на страницу:

Определим функции чувствительности параметров рассеяния к пассивному двухполюснику yo включенному между произвольными узлами k и l (см. рисунок 8.5а)

Рисунок 8.5. Расчёт чувствительности S-параметров

SSijy0 = dSij/dy0 = kijji(k+l)(k+l)Δ – Δ(k+l)(k+lji)/Δ² = –kijΔj(k+l)Δ(k+l)i/Δ²  = –kij[(Δjk – Δjl)(Δki – Δli)]/Δ²

При получении данного и последующих выражений используются следующие матричные соотношения [3]:

Δ(i+j)(k+l) = Δi(k+l) + Δj(k+l) = (Δik – Δil) + (Δjk – Δjl),

ΔijΔkl – ΔilΔkl = ΔΔij,kl.

Для электронных схем, содержащих БТ, моделируемые ИТУТ (см. подраздел 2.4.1), определим чувствительность S-параметров к проводимости управляющей ветви =1/ и параметру управляемого источника a включенных соответственно между узлами k, l, и p, q (рисунок 8.5б):

SSijgэ = dSij/dgэ = kij[(Δji(k+l)(k+l)Δ + αΔij(k+l)(p+q))Δ – (Δ(k+l)(k+l)Δ+αΔ(k+l)(p+qij])/Δ² = –kijΔ(k+l)ij(k+l) + αΔj(p+q))/Δ²  = –kijki – Δli)[(Δjk – Δjl)+ α(Δjp - Δjq)/Δ²,

SSijα = dSij/dα = kijji(k+l)(p+q)Δ – Δ(k+l)(p+qji)/Δ² = –kijΔj(p+q)Δ(k+l)i/Δ²  = –kij[(Δjp – Δjq)(Δki – Δli)]/Δ².

Если электронная схема содержит ПТ, моделируемые ИТУН (см. подраздел 2.4.1), то чувствительность параметров рассеяния к крутизне S, включенной между узлами p, q при узлах управления k, l (рисунок 8.5в), равна

SSijS = dSij/dS = kijji(k+l)(p+q)Δ – Δ(k+l)(p+qji)/Δ² = –kijΔj(k+l)Δ(p+q)i/Δ²  = –kij[(Δjk – Δjl)(Δpi – Δqi)]/Δ².

Чувствительность параметров рассеяния к любому Y-параметру подсхемы (рисунок 8.5г), например, ykl, будет равна

SSijykl = dSij/dykl = kijji,klΔ – ΔklΔij)/Δ² = –kijΔjlΔki/Δ².

При известной чувствительности ykl к параметру элемента подсхемы x (см. рисунок 8.5г) чувствительность S-параметров полной схемы к этому параметру, в соответствии с понятием сложной производной, выразится как

SSijx = (dSij/dykl)(dykl/dx) = SSijykl·Syklx.

Последнее выражение указывает на возможность применения метода подсхем при анализе чувствительности сложных электронных схем.

Зная связь параметров рассеяния с вторичными параметрами электронных схем (KU, Zвх, Zвых и др.) и чувствительность параметров рассеяния к изменению элементов схемы, возможно нахождение функций чувствительности вторичных параметров к изменению этих элементов. Например, для коэффициента передачи по напряжению с i-го на j-й узел Kij=Sji/(1+S11) чувствительность к изменению параметра x (полагая, что Sij=f(x) и Sii=φ(x)) получаем

SKijx = dKij/dx = [SSijx(1 + Sii) – SSiixSij]/(1 + Sii)².

Аналогично для Zвх(вых) (Zii(jj)) имеем

Zii(jj) = (н)·(1 + Sii(jj))/(1 – Sii(jj));

SZii(jj)x = dZii(jj)/dx = –2(нSSii(jj)x·Sii(jj)/(1 – Sii(jj))².

Данный способ столь же эффективно может быть использован при определении чувствительности более высоких порядков для всевозможных характеристик электронных схем. Реализация полученных таким образом алгоритмов расчета чувствительности сводится к вычислению и перебору соответствующих алгебраических дополнений, что хорошо сочетается с нахождением других малосигнальных характеристик электронных схем.

8.5. Машинные методы анализа АЭУ

В подразделе 2.3 приведена основная идея обобщенного метода узловых потенциалов, на основе которого были получены большинство соотношений для эскизного расчета усилительных каскадов. Однако наряду с несомненными достоинствами данного метода (простота программирования, малая размерность получаемой матрицы проводимости Y, n*n, где n- количество узлов схемы без опорного), данный метод имеет ряд существенных недостатков. В первую очередь следует отметить невозможность представления в виде проводимости некоторых идеальных моделей электронных схем (короткозамкнутых ветвей, источников напряжения, зависимых источников, управляемых током и т.д.). Кроме того, представление индуктивности проводимостью неудобно при временном анализе схем, что связано с преобразованием Лапласа (оператор Лапласа p должен быть в числителе для того, чтобы система алгебраических уравнений и полученная в результате преобразования система дифференциальных уравнений имела одинаковые коэффициенты).

В настоящее время наибольшее распространение получили топологические методы формирования системы уравнений электрической цепи, наиболее общим из которых является табличный [4].

В этом методе все уравнения, описывающие цепь, включаются в общую систему уравнений, содержащую уравнения Кирхгофа для токов, напряжений и компонентные уравнения.

Уравнения Кирхгофа для токов можно представить в виде

AIв = 0,

где — матрица инценденции [4], описывающая топологию цепи,  — вектор тока ветвей.

Уравнения Кирхгофа для напряжений имеют вид

 – AtVп = 0,

где  и Vп — соответственно, вектора напряжений ветвей и узловых потенциалов, At — транспонированная матрица инценденции A.

В общем случае уравнения, описывающие элементы цепи, можно представить в следующей форме:

YвBв + ZвIв = ,

где  и  — соответственно, квазидиагональные матрицы проводимости и сопротивления ветвей,  — вектор, куда входят независимые источники напряжения и тока, а также начальные напряжения и токи на конденсаторах и индуктивностях.

Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение А. Красько - Схемотехника аналоговых электронных устройств, относящееся к жанру Компьютерное "железо". Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)