`
Читать книги » Книги » Книги о бизнесе » Финансы » Аналитическая фабрика. Как настроить финансовую аналитику под задачи бизнеса - Владимир Волнин

Аналитическая фабрика. Как настроить финансовую аналитику под задачи бизнеса - Владимир Волнин

1 ... 57 58 59 60 61 ... 78 ВПЕРЕД
Перейти на страницу:
по факту величины будут иметь распределение, близкое к нормальному.

Среднеквадратичное отклонение доходностей Rt финансового актива за Т торговых периодов определяется следующим образом:

Обычно в качестве интервала используют дневной промежуток и говорят о дневной волатильности.

Основным недостатком модели SHV является то, что изменения цен, происходившие довольно давно, имеют тот же вес, что и изменения, произошедшие в последнее время. Таким образом, высокая волатильность котировок в прошлом, особенно при значительной глубине выборки, может влиять на рост среднеквадратического отклонения доходности, а следовательно, и характеристики риска, даже несмотря на то, что текущие значения котировок стабильны уже длительное время. И наоборот, стабильность котировок в прошлом может привести к снижению среднеквадратического отклонения и характеристик рынка, несмотря на высокую волатильность котировок в текущем и ближайших к текущему периодах. Для устранения этого недостатка в аналитической практике применяют и другие модели (ARCH, GARCH, EWMA, HLHV), однако, как было отмечено выше, я остановлюсь на модели SHV. Расчет дневной доходности акций будет проведен с использованием следующей формулы:

Котировки акций взяты на момент закрытия торгового дня (табл. 102).

Проведем расчеты отдельных показателей. Так, дневная доходность акций ПАО «Сбербанк» на 02.07.2019 г. составила:

По аналогии рассчитываем доходности остальных бумаг.

Далее определяем основные параметры распределения доходности. К ним относятся математическое ожидание (среднее значение доходности) и среднеквадратическое (стандартное) отклонение. Для их расчета можно воспользоваться встроенными формулами MS Excel:

Математическое ожидание = СРЗНАЧ (диапазон доходностей акции),

Стандартное отклонение = СТАНДОТКЛОН (диапазон доходностей акции).

Проводим оценку бета-коэффициента акций ПАО «Сбербанк»:

К найденному значению «сырого» бета-коэффициента применяем поправку Блюма:

βadj = 0,67 × β + 0,33 × 1 = 0,67 × 0,66 + 0,33 × 1 = 0,77.

По аналогии делаем расчет для остальных акций.

2. Метод среднеотраслевых коэффициентов основан на предположении о том, что систематический бизнес-риск любой компании связан с тем видом деятельности, которым она занимается. Конкретные особенности компании не принимаются в расчет и относятся к сфере несистематического риска (табл. 103).

Использование отраслевого бета-коэффициента является довольно распространенной практикой, особенно в условиях слабой развитости фондового рынка и непубличности акций компаний. При этом, чтобы сделать переход от среднеотраслевого значения β, которое, как было показано ранее, можно найти в различных справочниках[83], необходимо выполнить ряд шагов. Алгоритм этого перехода можно представить следующим образом.

1. Определяем отраслевую принадлежность компании.

2. Определяем среднеотраслевую β соответствующей отрасли по выбранным справочникам. Если бизнес компании не подлежит строгой отраслевой идентификации, а сочетает в себе разные бизнес-направления, то необходимо выбрать β для каждого из них и определить величину средневзвешенной β, у которой в качестве весов будут выступать доли выручки, генерируемые данными бизнес-направлениями в совокупной выручке.

3. Желательно использовать значение безрычаговой (нелевереджированной) β (βU). В противном случае (при рычаговой βL) бета-коэффициент (βL) следует «очистить» от финансового рычага, присущего данной отрасли:

Или сделать это, используя формулу Хамады:

4. Найденное значение отраслевой безрычаговой βU скорректировать с учетом структуры капитала анализируемой компании, используя формулу Хамады.

Модель Хамады: учет финансовой зависимости компании

Роберт Хамада скомбинировал модель ценообразования капитальных активов (САРМ) и модель Модильяни‒Миллера с учетом налогообложения[84]. В результате он вывел формулу для расчета стоимости собственного капитала финансово зависимой компании, учитывающую как финансовый, так и бизнес-риск:

E(Ri)L = Безрисковая ставка + Премия за бизнес-риск + Премия за финансовый риск,

где βU – бета-коэффициент компании той же группы делового риска, что и рассматриваемая, но не имеющей финансовой зависимости.

Модель Хамады оценивает требуемую доходность акционерного капитала как сумму трех составляющих: безрисковой доходности Rf, компенсирующей акционерам временную стоимость их денежных средств, премии за деловой риск (Rm – Rƒ) × βU и премии за финансовый риск

Если компания не привлекает заемное финансирование, то коэффициент финансового риска равен нулю, а ее собственники будут получать только премию за деловой риск.

В уравнение Хамады можно подставить балансовую стоимость акционерного капитала (Е), однако в большинстве случаев используют его рыночную стоимость.

Уравнение Хамады служит для вывода другого уравнения, с помощью которого можно оценить влияние заемного финансирования в структуре капитала компании на бета-коэффициент. Бета-коэффициент финансово зависимой компании равняется бета-коэффициенту, который имела бы эта компания, если бы не привлекала заемный капитал, скорректированному на ставку налога на прибыль и коэффициент финансового рычага:

Если компания использует также привилегированные акции, то формула приобретает следующий вид:

где Р – рыночная стоимость привилегированных акций.

В ряде случаев модель CАРМ применяется для оценки не только требуемой доходности (стоимости) собственного капитала, но и всего капитала. Такой подход предполагает переход от бета-коэффициента для собственного капитала (Equity beta) к бета-коэффициенту для активов (Assets beta):

где βЕ – бета-коэффициент для собственного капитала (рассчитывается по чувствительности доходности акций компании к доходности рынка);

βD – бета-коэффициент для заемного капитала (рассчитывается по чувствительности доходности облигаций компании к доходности рынка).

3. Фундаментальный метод оценки бета-коэффициента с анализом факторов риска[85]. В основу метода заложен принцип экспертной оценки различных факторов риска, связанных с деятельностью компании. Представленный в табл. 104 перечень факторов не является статичным и может быть расширен под специфику работы конкретной компании. Суть метода заключается в отнесении экспертом каждого фактора риска к определенному классу, которому соответствует свой бета-коэффициент.

В качестве примера представлен результат разнесения экспертами факторов риска компании. По каждому классу риска определяется общее количество наблюдений и бета-коэффициент как взвешенное значение от количества наблюдений:

Для подсчета количества

1 ... 57 58 59 60 61 ... 78 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Аналитическая фабрика. Как настроить финансовую аналитику под задачи бизнеса - Владимир Волнин, относящееся к жанру Финансы. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)