`
Читать книги » Книги » Фантастика и фэнтези » Научная Фантастика » Александр Казанцев - Иножитель (Клокочущая пустота, Гиганты - 3)

Александр Казанцев - Иножитель (Клокочущая пустота, Гиганты - 3)

1 ... 54 55 56 57 58 ... 63 ВПЕРЕД
Перейти на страницу:

И он стал писать на бумаге ряд формул*.

_______________

* Примечание автора для особо интересующихся. Целочисленные

решения диофантова уравнения xn + yn = zn с отрицательными

степенями были доказаны в наше время математиком-любителем из г.

Мариуполя Г. И. Крыловым, который для n = - 2 так свел уравнение:

Г. И. Крылов, преобразовав диофантово уравнение в биномы,

получил формулу, поэтически названную им "Людмилой". (Люда + Мила),

(|x| + |a|) + (|x| + |b|) = (|x| + |c|), где |а| = |z| - |x|, |b| =

|y| - |x| и |c| = |z| - |x|, позволившую ему решать уравнения и с

положительными, и с отрицательными степенями.

- Так что же вы тут написали, мой друг? - спросил Ферма, беря в руки исписанный листок.

- Мне кажется, - скромно заметил Сирано, - что ваша теорема не потеряет от некоторого уточнения.

- Уточнения? Вы хотите уточнять точную науку? Э, мой молодой друг! Мне на радость и удивление, вам удалось решить мою задачу. Однако, поднял он палец, - лишь наполовину! Угадали "подводную часть" моего загадочного корабля, а мачты с раздутыми парусами остаются в тумане. И вы не знаете метра Ферма! Этот хитрюга любит озадачивать людей своими математическими этюдами. Он, видите ли, близок к шахматам, играл и с Рене Декартом, и с кардиналом Ришелье, и особую склонность имеет к древним "мансубам", шахматным задачам, испытывает наслаждение, решив их. Так вот, он, этот метр Ферма, не хочет лишать наслаждения математиков, которые, самостоятельно найдя открытое и скрытое Пьером Ферма, получат истинную радость открывателей. Разве это так уж худо?

- Напротив, метр! Это прекрасно! Но это означает, что вы знали об отрицательных степенях?

- Разумеется, мой друг! Они  п р и с у т с т в у ю т  в с к р ы т о м  в и д е  в моем кратком, в е р н о м  и лаконичном, как все в математике, утверждении о неразлагаемости в целых числах степеней больше квадрата.

- Как же это может быть? Отрицательное скрыто в положительном?

- Это не более сложно, чем только что сделанный вами вывод. Впрочем, продолжим нашу беседу на языке формул. - И он пододвинул к себе лист бумаги с писчими принадлежностями. - Я для вашего удобства тоже воспользуюсь обозначениями Декарта, а не привычными из алгебры Виета. - И на бумаге под его пером стали появляться аккуратно выписанные строчки формул*. - Достаточно, мой друг, привести дроби к общему знаменателю и отбросить его.

_______________

* Аналогично получается и для степени n = -1, опять-таки Z =

a0b0, но X = a0 (a0 + b0); r = b0 (a0 + b0).

- Как видите, - продолжал Ферма, - путем несложных преобразований мы снова приходим к исходному выражению с положительными степенями, хотя начали с отрицательных. Не правда ли? К тому самому выражению, когда целое число, возведенное в степень, может разложиться на два целых числа в той же степени, лишь когда степень эта не больше квадрата*. Нельзя представить себе ничего более  о ч е в и д н о г о, но как трудно это доказать. Не знаю, когда мне это удастся? Вот и вы пытаетесь в своем трактате доказать о ч е в и д н у ю  м у д р о с т ь - жить не по праву силы, а по справедливости, противопоставляя "царство хищных птиц" стране мудрецов.

_______________

* Примечание автора для особо интересующихся. Уравнение с

отрицательными степенными можно представить в виде дробей:

1 1 1

--- + --- = --- ,

an bn cn

приведя обе части уравнения к общему знаменателю, получим:

(bc)n + (ac)n (ab)n

--------------- = ------- ,

(abc)n (abc)n

отбросив равные нижние части и считая X = bc; Y = ac и Z = ac,

приходим к диофантовому уравнению:

xn + yn = 2n

1 1 1 x2 y2

--- + --- = --- ; z2 = --------- .

x2 y2 z2 x2 + y2

Пользуясь вспомогательным прямоугольным треугольником с

пифагоровыми тройками, можно положить x = a0c0, y = b0c0, имея в

виду, что c02 = a02 + b02. Подставив теперь принятые значения,

имеем:

a02 b02 (a02 + b02)

Z2 = ----------------------- или Z = a0b0.

a02 + b02

- Поистине, метр, д о п о д л и н н о  о ч е в и д н о е  все же невидимо для закрытых глаз.

- Что ж, открыть на это людям глаза - одна из главных задач доброносцев, вынужденных пока что держать свои намерения в тайне. Однако не продолжить ли нам нашу беседу внизу, за трактирным столом? Госпожа Франсуаза обещала мне угостить нас с вами особым обедом, приготовленным с любовью.

- С любовью? - насторожился Сирано.

- Очевидно, она любит готовить вкусные блюда, - с лукавой улыбкой сказал Пьер Ферма и похлопал Сирано по плечу. Они спустились вниз, где их уже ждала взволнованная Франсуаза. Жан пристально наблюдал за вернувшимися "заговорщиками", стараясь хоть что-нибудь уловить из оброненных ими слов.

Франсуаза сама прислуживала за столом, обменявшись с Сирано взглядом, она потом, подходя к столу гостей, не поднимала глаз.

- Итак, дорогой мой друг! - начал Ферма, поднимая кружку вина. - Я предлагаю выпить за отрицательные степени!

- За разложение степеней, метр!

- Ваши кушанья, госпожа Франсуаза, заставляют забыть обо всем, даже о том, что особенно нужно помнить толстеющему человеку! - говорил Ферма, уплетая жаркое.

Жан старался уловить тайный смысл даже в этих словах. А когда Сирано, поднимая следующую кружку за Франсуазу, которую сравнил с мадонной, говоря, что она, казалось бы, далекая от математики, открыла ему поразительную по своей точности и выразительности формулу, и повторил ее: "Счастье - это Свобода, Равенство, Братство... и Любовь", Жан понял, что заговорщический разговор с лозунгами черни, бушевавшей на баррикадах, продолжается.

Отец Максимилиан, которому он потом постарался передать все это, заметил:

- Отрицательные степени? Это, надо думать, отнятые мятежниками титулы и состояния у высокородных господ. А формула их счастья - это призыв к мятежу, поползновение на божественные устои власти и государства. Мы на верном пути, мой добрый Жан! Что же еще говорили смутьяны?

- Они прощались, отец мой. Судейский возвращался в Тулузу. А Сирано де Бержерак обещал подготовить и прислать ему письмо с доказательством чего-то, что он надеялся доказать, и с трактатом о государствах солнца.

- Это несомненный памфлет, и теперь уже не на кардинала Мазарини, а на самого короля Людовика XIV, которого уже называют Солнцем.

Жан, издали следуя за Сирано, когда он покинул ставший ему таким родным трактир "Не откажись от угощенья!", отметил необычайную задумчивость "заговорщика", шедшего с опущенной головой.

Из-под стропил строящегося рядом с трактиром дома Жан некоторое время наблюдал за Сирано, потом проводил его до самого дома, где Бержерак уединенно жил вместе с матерью и младшим братом.

Что делал, о чем писал Сирано, тень которого виднелась на стене через окно, Жан не знал и узнать не мог.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 54 55 56 57 58 ... 63 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Александр Казанцев - Иножитель (Клокочущая пустота, Гиганты - 3), относящееся к жанру Научная Фантастика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)