`
Читать книги » Книги » Домоводство, Дом и семья » Развлечения » Мартин Гарднер - Математические головоломки и развлечения

Мартин Гарднер - Математические головоломки и развлечения

1 ... 8 9 10 11 12 ... 97 ВПЕРЕД
Перейти на страницу:

Английское название игры в крестики и нолики — тик-так-тоу — пишется и произносится по-разному. Согласно «Оксфордскому слословарю стихов Матушки-гусыни»[11] название тик-так-тоу происходит от старинной английской детской считалочки:

Tit, tat, toe,My first go,Three jolly butcher boys all in a row.Stick one up, stick one down,Stick one in the old man's crown.[12]

Я знаю многих любителей крестиков и ноликов, которые ошибочно полагают, что самое главное — это научиться неизменно выигрывать, и считают, что они уже постигли все тайны этой игры.

Истинный же мастер игры в крестики и нолики должен уметь использовать малейшее преимущество, возникающее даже в тяжелых для него ситуациях. Следующие три примера помогут читателю уяснить сказанное. Первый ход во всех трех партиях делается на одну из клеток 2, 6, 8, и 4.

Если вы начинаете с хода X8, а противник отвечает вам ходом О2, то вторым ходом вам лучше всего пойти на четвертую клетку (Х4). Этот ход приводит к выигрышу в четырех из шести возможных ответных ходов противника. Помешать вам выиграть противник может лишь ходом О7 или О9. Если противник сначала пошел Х8, а вы ответным ходом заняли одну из нижних угловых клеток, например О9, то вы еще можете надеяться на победу: противнику достаточно совершить любой из ходов Х2, Х4 или Х7.

Если противник делает первый ход Х8, то ответный ход О5 может привести к интересному развитию партии: если противник вторым ходом занимает клетку 2 (Х2), то вы можете даже позволить ему выбрать за вас ту клетку, которую вы займете при следующем ходе. При любом вашем ходе выигрыш вам обеспечен!

Рассказывая о разновидности игры в крестики и нолики, любимой древними римлянами, в которой фишки разрешалось передвигать с клетки на клетку, мы упоминали о том, что игрок, заняв центр доски, всегда выиграет. Для тех читателей, кого это интересует, приводим примерный ход двух партий в древнеримские крестики и нолики.

Обе партии гарантируют первому игроку выигрыш независимо от того, разрешается ли передвигать фишки по двум главным диагоналям или нет. Если фишки можно передвигать и по малым, побочным, диагоналям, следует придерживаться только второй партии.

Глава 5. ПАРАДОКСЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Теория вероятностей представляет собой область математики, необычайно богатую парадоксами — истинами, настолько противоречащими здравому смыслу, что поверить в них трудно даже после того, как правильность их подтверждена доказательством. Прекрасный пример этому — парадокс с днями рождения. Выберем наугад 24 человека. Какова, по вашему мнению, вероятность того, что двое или большее число из них родились в один и тот же день одного и того же месяца (но, быть может, в разные годы)? Интуитивно чувствуется, что вероятность такого события должна быть очень мала. На самом же деле она оказывается равной 27/50, то есть чуть выше 50 %!

Вероятность того, что дни рождения любых двух людей не совпадают, очевидно, равна 364/365 (поскольку лишь в одном случае из 365 возможных дни рождения совпадают). Вероятность несовпадения дня рождения третьего человека с днем рождения любых двух других членов отобранной группы составляет 363/365. Для четвертого человека вероятность того, что его день рождения отличается от дней рождения любых трех людей, равна 362/365 и т. д. Дойдя до двадцать четвертого участника эксперимента, мы увидим, что вероятность несовпадения его дня рождения с днями рождения остальных двадцати трех участников равна 342/365/ Таким образом, мы получаем набор из 23 дробей. Перемножив их, мы найдем вероятность того, что все 24 дня рождения различны. Сократив числитель и знаменатель произведения двадцати четырех дробей, мы получим дробь 23/50, Иначе говоря, заключая пари на то, что среди 24 по крайней мере двое родились в один и тот же день, вы будете выигрывать в 27 и проигрывать в 23 случаях из 50. (Проведенный нами подсчет вероятности не совсем точен, он не учитывает того, что год может быть високосным — то есть в феврале может быть 29 дней — и что дни рождения чаще приходятся на одни месяцы и реже на другие.

Первое обстоятельство уменьшает вероятность интересующего нас события, второе — увеличивает.)

Приведенные цифры настолько неожиданны, что экспериментальная проверка их в классе или среди сослуживцев может явиться отличным развлечением. Если присутствует более 23 человек, попросите каждого написать на листке бумаги его день рождения.

Соберите и сложите листки. Скорее всего по крайней мере две даты совпадут, что обычно вызывает невероятное удивление даже у людей, знакомых друг с другом в течение многих лет. Результат не изменится, если кто-нибудь схитрит, написав неправильную дату.

Вероятность совпадения остается и в этом случае.

Еще проще проверить парадокс, выбирая случайным образом даты рождения 24-х людей из книги «Кто есть кто» или какого-нибудь другого биографического справочника. Естественно, что чем большее число имен превышает 24, тем больше вероятность совпадения. На рис. 21 изображена кривая, показывающая рост вероятности с увеличением числа людей.

Рис. 21

График обрывается, когда число людей достигает 60, потому что дальше вероятность уже слишком близка к достоверности (то есть к значению 1) и кривую практически невозможно отличить от прямой. В действительности даже для 23-х людей вероятность совпадения по крайней мере одного дня рождения превышает 1/2 и равна 0,507… Обратите внимание, как круто поднимается кривая примерно до числа 40 и как она выходит на плато по мере приближения к достоверности. Взяв 100 человек, вы сможете заключить пари, выигрывая в 3 299 000 случаях из 3 300 000. Конечно, абсолютная достоверность достигается лишь тогда, когда взято 366 человек.

Прекрасной иллюстрацией парадокса могут служить даты рождения и смерти 33 президентов Соединенных Штатов. В каждом случае вероятность совпадения (33 даты рождения, 30 дат смерти) близка к 75 %. И действительно, Полк и Хардинг родились 2 ноября, а три президента — Джефферсон, Адаме и Монро — умерли 4 июля.

Может быть, еще более удивителен парадокс со вторым тузом.

Представьте себе, что вы играете в бридж. Сдав колоду и посмотрев на свои карты, вы говорите: «У меня туз». Можно точно вычислить вероятность того, что у вас на руках окажется и второй туз. Можно доказать, что она равна 5359/14498, то есть меньше 1/2. Допустим теперь, что мы выбрали, например, туза пик. Будем продолжать игру до тех пор, пока, взяв карты, вы не сможете сказать: «Туз пик у меня». Вероятность того, что у вас найдется еще один туз, составляет теперь 11686/20825, то есть немногим больше 1/2! Почему изменяется вероятность, если вы заранее называете масть выбранного туза?

Вычисление вероятностей в обоих только что рассмотренных примерах — дело долгое и скучное, но разобраться, отчего возникает парадокс, нетрудно, если оставить в колоде всего лишь четыре карты: туза пик, туза червей, двойку треф и валета бубен. Если в игре участвуют двое, то при сдаче карт на руках у любого из игроков оказывается одна из шести возможных комбинаций (рис. 22).

Рис. 22

В пяти случаях игрок имеет право заявить, что у него туз, но только в одном случае у него будет еще и второй туз. Следовательно, вероятность появления второго туза равна 1/5. С другой стороны, в трех случаях игрок с полным основанием может утверждать, что у него есть туз пик. В одном из этих трех случаев у него на руках оказывается еще и второй туз, поэтому при такой постановке задачи вероятность появления второго туза становится равной 1/3.

Очень похож на парадокс со вторым тузом парадокс со вторым ребенком. Мистер Смит сообщает, что у него двое детей и по крайней мере один из них мальчик. Какова вероятность того, что второй ребенок мистера Смита тоже мальчик? Первое, что приходит в голову, — это сказать, что вероятность равна 1/2, но, перебрав три равновероятных возможности — ММ, МД, ДМ, — мы видим, что ММ — только одна из них, следовательно, искомая вероятность равна 1/3 [Если дети не близнецы!]. Ситуация резко изменилась бы, если бы Смит сказал, что мальчиком является старший (или тот, кто повыше ростом, или тот, чей вес больше) из его детей. В этом случае допустимые комбинации исчерпываются двумя — ММ и МД— и вероятность того, что другой ребенок мистера Смита мальчик, возрастает до 1/2. Не будь этого обстоятельства, мы могли бы очень просто угадывать, какой стороной упала и скрытая от нас монета, причем с вероятностью, превосходящей вероятность отгадывания вслепую. Для этого нам нужно было бы бросить свою монету и, если бы она упала вниз решкой, рассуждать так: бросали две монеты, одна из них (наша) выпала вверх орлом, поэтому вероятность того, что другая монета также выпала вверх орлом, равна всего лишь 1/3, и мы смело можем утверждать, что другая монета выпала вверх решкой. Ошибка этого рассуждения заключается, конечно, в том, что нам точно известно, какая именно монета упала орлом вверх. Ситуация здесь аналогична ситуации в предыдущей задаче, когда мистер Смит сообщает, кто из детей мальчик, поэтому и вероятность правильного ответа в обеих задачах меняется одинаково.

1 ... 8 9 10 11 12 ... 97 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Мартин Гарднер - Математические головоломки и развлечения, относящееся к жанру Развлечения. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)