`
Читать книги » Книги » Документальные книги » Публицистика » Воздействие на геосферы Земли – причина изменения климата - Михаил Стефанович Галисламов

Воздействие на геосферы Земли – причина изменения климата - Михаил Стефанович Галисламов

1 ... 21 22 23 24 25 ... 40 ВПЕРЕД
Перейти на страницу:
составила бы около 8 км, а толщина оболочки всего объема озона был бы около 3 мм [89]. Толщина гипотетического слоя озона над конкретным пунктом местности определяет характеристику озонового слоя – общее содержание озона (ОСО), измеряемое в единицах Добсона (ед. Д.); приведенная толщина слоя озона в 3 мм соответствует 300 ед. Д. Одна единица концентрации озона в атмосфере Земли (1 ед. Д.) соответствует 0,01-миллиметровому слою чистого озона при температуре 0°C и давлении 1 атм. Озон рассредоточен во всей толще атмосферы с максимумом на высоте 20–30 км. Среднее значение толщины слоя в разных широтах и в различные сезоны года может увеличиваться или уменьшаться вдвое [90].

В 1922 г. Г.М.Б. Добсон разработал спектрофотометр для измерения ОСО, который и в настоящее время используется для проведения наиболее точных измерений. Результаты уже первых наблюдений (1927 г.) показали, что общее содержание озона в направлении от экватора к Северному полюсу увеличивалось. Природное явление противоречило общефизическим представлениям: в районе предполагавшегося источника (экваториальная стратосфера) озона меньше, чем в области стока (средние и полярные широты). В связи с этим стали появляться гипотезы, объясняющие наблюдения. Первую «динамическую» гипотезу предложил еще в 1929 г. Г.М. Добсон. Суть механизма состояла в следующем: озон в системе общей циркуляции атмосферы переносится из экваториальной стратосферы (где он, согласно гипотезе, образуется) в полярные широты с постепенным снижением высоты «центра тяжести» озонового слоя [90]. Последователи гипотезы Добсона «подбирали» различные динамические параметры для объяснения происхождения весеннего максимума в общем содержании озона в полярных и субполярных районах. Английский геофизик С. Чепмэн. выступил (1929 г.) в Лондонском Королевском обществе (Академия Наук Великобритании) с докладом о созданной им фотохимической теории стратосферного озона. Чепмэн, основываясь на данных наблюдений и пяти классических кислородных реакциях, разработал теорию образования озона. Ее действие ограничено 45° градусами широты к северу и югу от экватора. В теории Чепмэна для создания объема не хватало химических и фотохимических реакций. Включение в теорию новых многочисленных реакций позволило устранить разбалансировку в процессах образования и разрушения озона. Однако новая модель, как и прежняя, не могла объяснить годовой ход изменения озона и весенний максимум в полярных районах.

Изменение количества озона в полярной атмосфере впервые заметил британский ученый Г. Добсон, во время проведения наблюдений 1957–1959 гг. При помощи прибора, сконструированного им, он измерял содержание озона в атмосфере на антарктической станции Холли-Бей (Великобритания). Количество озона уменьшалось весной (сентябрь, октябрь) и восстанавливалось до прежнего уровня к ноябрю месяцу. Ученый связал это явление с динамическими процессами, протекающими зимой в антарктической атмосфере. Подобные явления наблюдались и на других станциях.

Количество озона неодинаково над различными частями Земли. В 1984 г. в слое над Антарктидой спектроскопическими методами была обнаружена «озоновая дыра» [81]. Спутниковые измерения позволили следить за изменениями контура «дыры». Измерения носили эпизодический характер, делались и делаются спектроскопическими методами. Многолетний отрицательный тренд содержания озона, наблюдается с начала 80-х годов прошлого века [91]. С 2015 по 2019 гг. озоновая «дыра» над Антарктикой уменьшилась с 25,6 до 9,3 млн. км2. В 2020 году с середины августа «дыра» вновь росла и достигла в начале октября максимума (24 млн км2), распространившись над большей частью континента. Содержание озона на высоте 20–25 километров над Антарктидой составляло менее 100 е. Д. [92]. В Антарктике ежегодно в весенний период развивается депрессия озона. По мнению ученых, межгодовые флуктуации, являясь следствием причин динамического характера, не позволяют однозначно определить многолетний тренд общего содержания озона.

Данные о суточной температуре почвы на глубинах до 320 см по 466 метеорологическим станциям России за период 1971–2000 гг. показывают: практически на всех площадках тренды сохраняют положительные значения [93]. Потепление продолжается. Скорость роста осредненной по России среднегодовой температуры за период 1976–2020 гг. составила 0,51 °С/10 лет. Наиболее быстрый рост наблюдается весной (0,66 °С/10 лет). Среднегодовая аномалия температуры в 2020 г. (относительно норм 1981–2010 гг.) составила +0.83 °С, что на 0,18 °С больше рекорда 2016 года.

Измерения свидетельствует о тенденции увеличения среднегодовой температуры в поверхностных слоях Земли. Предполагаем, что вследствие искусственного создания высокой разницы потенциалов между атмосферой и земной корой, все среды, попавшие под действие электромагнитного и электрического полей, нагреваются токами, протекающими в ГЭЦ. Жидкости под действием электрического поля поляризуются. Минеральные растворы разлагаются на более простые элементы, образуются ионные газы, которые участвуют в качестве носителей токовых зарядов в ГЭЦ и разрушают озон. Толщина озоносферы уменьшается. Проникающая радиация, достигающая поверхности земли, увеличивается. Совокупность, описанных выше процессов, вызывает нагрев веществ в земной коре и атмосфере. Электрохимические процессы, вызванные ГЭЦ, в конечном итоге приводят к температурным аномалиям, климатическим катаклизмам на Земле и изменению экологической обстановки.

17. Мониторинг состояния озонового слоя

Озонометрическая сеть России включает 28 регулярно работающих станций (на 2017 г.) в Северном полушарии, оснащенных фильтровыми озонометрами М-124 [94]. Методическое и техническое руководство сетью осуществляет ГГО (Главная геофизическая обсерватория); там разрабатываются методики наблюдений, осуществляется поверка озонометров, проводится контроль качества измерений и их коррекция. Данные ОСО от российских станций, 5 станций Казахстана и 1 Туркменистана по электронной почте оперативно поступают в ЦАО, ГГО и Гидрометцентр России. ЦАО (Центральная аэрологическая обсерватория) оперативно обрабатывает поступившие данные, строит карты распределения ОСО над Россией и прилегающими территориями, проводит первичный контроль качества измерений. При наличии аномалий оповещает Росгидромет и пересылает данные в WOUDC – Мировой центр данных ВМО (Всемирная метеорологическая организация – WMO) по озону и УФ радиации в Торонто, Канада. WOUDC получает данные по ОСО из различных стран и оперативно с привлечением спутниковой информации строит карты распределения ОСО и его аномалий над территорией всего земного шара (http://exp-studies.tor.ec.gc.ca/). На этих картах рядом с расположением станции приводится измеренное на ней значение ОСО. Оперативный мониторинг состояния озонового слоя впервые начали в ЦАО с 1988 г. Особое внимание было уделено мониторингу ультрафиолетовой облученности территорий в связи с наблюдаемым уменьшением общего содержания озона с 1988 г.

В рамках межправительственного соглашения между СССР и США об исследовании и использовании космического пространства в мирных целях от 15 апреля 1987 г. Госкомгидромет СССР подписал соглашение с НАСА США об установке американского прибора ТОМС на советском космическом аппарате «Метеор-3». По этому соглашению на ЦАО были возложены функции головного института по координации работ по созданию алгоритмов обработки данных прибора ТОМС, по архивации и распространению информации ежесуточного глобального распределения общего содержания озона.

Ежесуточный мониторинг глобального распределения ОСО с августа 1991 г. по декабрь 1994 г. проводился в оперативном режиме в течение всего периода функционирования прибора ТОМС на борту «Метеор-3». С целью контроля состояния озонового слоя над территорией РФ в ЦАО, по данным наземной и спутниковой аппаратуры с 1996 г. ведутся

1 ... 21 22 23 24 25 ... 40 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Воздействие на геосферы Земли – причина изменения климата - Михаил Стефанович Галисламов, относящееся к жанру Публицистика. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)