`
Читать книги » Книги » Документальные книги » Биографии и Мемуары » Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?

1 ... 22 23 24 25 26 ... 41 ВПЕРЕД
Перейти на страницу:

Эйнштейн в числе прочих физиков не был готов согласиться с этим выводом, и его дискуссии с Бором, посвященные данным вопросам, оказались крайне продуктивными. Эйнштейн описал мысленные эксперименты (то есть возможные логически, но нереализуемые на практике из-за технических ограничений), которые доказывали некорректность интерпретации Бора, однако Бор неизменно опровергал все возражения оппонента. Больше всего проблем вызвал так называемый парадокс Эйнштейна – Подольского – Розена, опубликованный в 1935 году. Представьте себе две частицы, которые появились в одной точке и начали движение в противоположных направлениях, например в результате распада какой-либо частицы. Импульсы этих частиц равны и имеют противоположные направления. Если мы измерим положение одной частицы и импульс другой в момент, когда они настолько удалены друг от друга, что какое-либо взаимодействие между ними отсутствует, то сможем одновременно определить обе эти величины для каждой из частиц по отдельности. Следовательно, принцип Бора, согласно которому одновременно измерить эти величины с произвольной точностью нельзя, не выполняется.

В свое время заголовки некоторых газет гласили, что Эйнштейн обрушился с нападками на квантовую теорию, однако журналисты не поняли сути вопроса: речь шла не о корректности квантовой механики как таковой, а о ее интерпре-

Фрагмент письма Гейзенберга к Паули от 23 февраля 1927 года, где изложены основы принципа неопределенности, который является частью копенгагенской интерпретации.

Гейзенберг и Бор (на фотографии внизу) с Максом Борном были основными носителями копенгагенского духа.

тации и связанных с этим философских проблемах. В целом эти вопросы крайне важны с концептуальной точки зрения, однако не интересуют большинство физиков, так как не имеют отношения к исследованиям. Как правило, ученые увлекаются проблемами, позволяющими делать прогнозы, истинность которых либо подтверждается экспериментально, либо следует из непротиворечивости самой теории.

У Бора больше, чем у кого-либо другого, я научился этой новой теоретической физике, которая была едва ли более экспериментальной, чем математика. […] Здесь важно найти нужные слова и понятия, чтобы описать любопытную физическую ситуацию, крайне сложную для понимания.

Гейзенберг в беседах с историком науки Томасом Куном, 1963 год

Эксперимент, проведенный в 1982 году Аленом Аспектом, Жаном Далибаром и Жераром Роже, изменил все. Он подтвердил самые парадоксальные прогнозы квантовой механики, и это заставило некоторых сказать: метафизика стала экспериментальной. Кроме того, был сделан шаг к развитию квантовой информатики, одним из истоков которой можно назвать парадокс Эйнштейна – Подольского – Розена.

Споры о терминологии

Принцип, соотношение или неравенство? Неопределенность, неточность, недетерминированность? Различные сочетания этих слов обозначают одно и то же, что приводит к путанице. Этой путаницы можно избежать, если использовать наиболее нейтральное словосочетание – неравенства Гейзенберга.

В физике принципом обычно называется фундаментальная гипотеза, как правило, подтвержденная экспериментально, которая служит основой для исследований в той или иной области. В качестве примера можно привести принцип Архимеда, принцип Паскаля и принципы термодинамики. Первые два принципа доказаны уже давно, однако они по-прежнему называются принципами в силу привычки или в знак уважения к их авторам. Гейзенберг не использовал этот термин, так как не постулировал свои результаты, а вывел их, поэтому будет уместнее говорить о теореме или о неравенствах Гейзенберга. Более деликатным является другой вопрос. Слово «неопределенность» подразумевает, что субъект не имеет четких знаний о чем-либо. На этом основании некоторые утверждают, что неравенства Гейзенберга накладывают ограничения на субъективные знания о природе, но не говорят ничего о самой природе. Следующим шагом в этих рассуждениях может стать отрицание любого объективного знания, и некоторые совершают этот шаг без каких-либо затруднений. Однако физики (а вместе с ними – и автор данной книги) вкладывают в это слово совершенно иной смысл.

Гейзенберг использовал слово Ungenauigkeit, что переводится как «неточность». Таким образом, речь идет не о субъекте, а об объекте эксперимента, о результатах измерения – именно так иногда объясняют смысл неравенств Гейзенберга. При измерении некой величины в лаборатории эксперименты повторяются достаточно большое число раз, что позволяет определить точность результата. Неточность имеет отношение к среднеквадратичному отклонению, то есть отклонению наблюдаемых значений от среднего. Слово «неточность» указывает, что неравенства Гейзенберга накладывают ограничения на измерения, которые можно выполнить в лаборатории, но это не так. Любую величину, указанную в неравенствах Гейзенберга, в частности импульс и положение электрона, можно измерить по отдельности с произвольно высокой точностью, по крайней мере теоретически. Смысл неравенств Гейзенберга заключается в том, что эта точность не может быть достигнута при одновременном измерении величин. Но так как волновая функция обозначает плотность вероятности, то можно с точностью определить среднее положение и импульс, которые обычно называют х и р соответственно, а также их среднеквадратичные отклонения Ах и Ар, рассчитываемые как квадратные корни средних значений (х – х)2 и (р-р)2 . Поэтому можно связать смысл этих величин с измерением.

Я считаю, что существование классической «траектории» можно определить следующим образом: «траектория» существует только тогда, когда мы ее наблюдаем.

Гейзенберг в статье о принципах неопределенности, 1927 год

Неравенства Гейзенберга в немецком языке также обозначаются словом Unscharferelation, a Unscharfe – это «нечеткость». Можно также использовать слово «недетерминированность», которое не указывает ни на ограниченность знаний субъекта, ни на сложности с проведением измерений. Неравенства Гейзенберга означают, что постоянная Планка – это универсальная мера недетерминированности, вносимой корпускулярно-волновым дуализмом и возникающей ввиду того, что мы продолжаем использовать классические понятия для описания квантовых явлений.

Глава 4 В защиту теоретической физики

После того как были заложены основы квантовой механики, ученые начали системно применять ее в других областях физики, в частности при изучении химических связей, ферромагнетизма и строения атомных ядер. Наблюдая за тем, как растет влияние нацизма, Гейзенберг использовал весь свой авторитет, который значительно возрос после получения им в 1933 году Нобелевской премии, чтобы помешать нацистским идеологам определять «правильность» научных открытий.

(adsbygoogle = window.adsbygoogle || []).push({});
1 ... 22 23 24 25 26 ... 41 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Жозе Фаус - Наука. Величайшие теории: выпуск 3: Гейзенберг. Принцип неопределенности. Существует ли мир, если на него никто не смотрит?, относящееся к жанру Биографии и Мемуары. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)