`
Читать книги » Книги » Детская литература » Детская образовательная литература » Искатели необычайных автографов - Владимир Артурович Левшин

Искатели необычайных автографов - Владимир Артурович Левшин

1 ... 85 86 87 88 89 ... 96 ВПЕРЕД
Перейти на страницу:
не умели уменьшать трение. Отсюда вечные заедания, зацепки…

— Хоть бы и так, — хорохорится Фило, — а все-таки четыре действия арифметики с плеч долой!

— Только два, мсье. Сложение и вычитание. Арифмометр Паскаля — прародитель сумматорных машин. Зато уже два-три десятилетия спустя появилась сумматорно-множительная машина Лейбница.

— Последователь, стало быть, не заставил себя ждать.

— Не последователь, а последователи, — снова поправляет бес. — Даже в семнадцатом веке их было уже несколько. Само собой, охотники погреть руки на чужом изобретении — не в счет. Паскаля оградила от них королевская привилегия, а еще — их собственное невежество: изготовление мало-мальски сносной подделки требовало сноровки и знаний, каких у них не было. Ну да что о них толковать! Мы ведь говорим о связи машины Паскаля с современностью.

— Как? Разве разговор не закончен? — удивляется Мате.

— Нет, мсье, мы как раз подошли к самому главному. А это — отнюдь не устройство машины. Главное — идея. Паскаль, если помните, руководствовался утверждением Декарта, полагавшего, что мозгу человеческому свойствен некий автоматизм и что многие умственные процессы, по сути дела, ничем не отличаются от механических. Иными словами, мозг столько же автомат, сколько живой орган. Работа над машиной заставила Паскаля не только утвердиться в этой мысли, но и углубить ее. Он понял, что действия арифметической машины даже ближе к мыслительному процессу, нежели то, на что способен живой мозг…

— Что?! — взвивается Мате. — У Паскаля есть такая запись? Но ведь это же одно из положений кибернетики!

— В том-то и дело, мсье. И значит, у нас с вами есть все основания считать Паскаля ее прародителем, что совершенно необходимо отметить еще одной чашкой чая.

Хозяин, улыбаясь, принимает у черта пустую чашку. Но что это? Рисунок на ней опять изменился. Теперь там изображены они сами — Фило, Мате и Асмодей на крыше руанской судебной палаты.

Улыбка медленно сползает с круглой физиономии Фило. Неужели его заставят копаться в теореме Дезарга? К счастью, эта неприятная для него операция переносится на другое время. Зато разговор о своей собственной теореме Мате откладывать не намерен. И многострадальный филолог покоряется своей участи.

— Итак, — говорит Мате, — напоминаю суть теоремы. Если на сторонах произвольного треугольника построить снаружи или внутри (значения не имеет) по равностороннему треугольнику и соединить прямыми их центры тяжести, то полученный таким образом новый треугольник тоже будет равносторонним.

— Насколько я понимаю, именно это и нуждается в доказательстве, — капризно замечает Фило.

— Совершенно верно. Так вот, вспомните чертеж, который я наспех набросал там, в Руане, на крыше. Впрочем, сейчас я его уточню… Вот, пожалуйста. Попытайтесь разобраться.

— Исключено. — вздыхает Фило.

— Позвольте, мсье, — вмешивается Асмодей. — Как видите, треугольник ОАВ совершенно произвольный, и на каждой его стороне построено по равностороннему треугольнику: ОСА, ADB и ОВЕ. Центры тяжести этих равносторонних треугольников обозначены буквами т, п и р, а из них, как из центров, проведены дуги ОkА, АkВ и ВkО — каждая в 120°. Се си? Так?

— Недурно, — говорит Мате. — Но вы не заметили самого примечательного: все три дуги пересеклись в общей точке k. Удивительная точка.

— Не хуже и не лучше других, — ехидничает Фило.

— Это как для кого, — отбивает удар Мате. — Немецкий математик Ште́йнер полагал иначе. Он доказал, что подобная точка находится в таком месте треугольника, из которого каждая сторона видна под одним и тем же углом — 120°.

— Что значит «видна под углом»? — сейчас же придирается Фило.

— Ну, это просто, мсье, — отзывается Асмодей. — Так математики называют угол между двумя лучами, проведенными из заданной точки через концы отрезка. И стало быть, в данном случае, как я понимаю, речь идет об углах ОkА, АkВ и ВkО. Каждый из них равен 120°. Я понятно изъясняюсь?

— Допустим, — уклончиво бурчит Фило. — Но что из этого следует?

— Только то, — поясняет Мате, — что сумма расстояний от точки k до вершин треугольников ОАВ — то есть  + kА + kВ — есть наименьшая из всех возможных для всякого треугольника, который не имеет угла, превышающего 120°… А теперь, чтобы двинуться дальше, необходимо провести несколько дополнительных отрезков. Во избежание путаницы сделаю новый чертеж, убрав всё лишнее. А вы глядите в оба — я хочу сказать, в оба чертежа.

Мате быстро набрасывает новый треугольник, обозначив его теми же буквами, что и на предыдущем. Затем соединяет вершины двух треугольников пунктиром и отмечает конгруэнтные стороны (Оm и ОА, Ап и пВ, Вр и рО) одной, двумя и тремя черточками.

— Ну-с, — торжественно произносит он, полюбовавшись своей работой, — теперь перегнем треугольники тАп, пВр и рОт по их непунктирным сторонам. Как вы думаете, где окажутся вершины А, В и О?

— В точке k, мсье, — сейчас же выскакивает Асмодей.

— Отлично! — говорит Мате. — Но что из этого следует?

— В самом деле, что? — хмыкает Фило.

— Да то, что площадь многоугольника ОтАпВрО ровно вдвое больше треугольника тпр, — отвечает Мате. — Остается самое главное. Надеюсь, не надо разъяснять, что отрезок пт есть биссектриса угла Апk, а пр — биссектриса угла kпВ. Это очевидно, так как пт перпендикулярно Аk, а треугольник Апк — равнобедренный. Точно так же: Вk перпендикулярно пр, и треугольник kпВ тоже равнобедренный.

— Но ведь отсюда вытекает, что углы Апт и Впр в сумме равны углу mnp! — взволнованно восклицает Асмодей. — А так как угол АпВ равен 120°, то…

— …угол тпр равен половине от ста двадцати, то есть 60°, — заканчивает Фило. — Это даже я понимаю!

— Растёте на глазах, — ухмыляется Мате. — Ну, а если те же рассуждения применить к углам птр и трп?

— Тогда станет совершенно ясно, что каждый из трех углов треугольника тпр равен 60°, — соображает Фило. — И стало быть, треугольник тпр — рав-но-сто-рон-ний.

— Квод демонстра́ндум э́рат! Что и требовалось доказать, — торжественно заключает Асмодей.

— Не забудьте рассмотреть еще два частных случая первоначального треугольника, — напоминает Мате, — когда сумма двух сторон равна третьей и когда одна из сторон равна нулю. — Он протягивает Фило и Асмодею заранее заготовленные чертежики. —

1 ... 85 86 87 88 89 ... 96 ВПЕРЕД
Перейти на страницу:

Откройте для себя мир чтения на siteknig.com - месте, где каждая книга оживает прямо в браузере. Здесь вас уже ждёт произведение Искатели необычайных автографов - Владимир Артурович Левшин, относящееся к жанру Детская образовательная литература / Математика / Прочее. Никаких регистраций, никаких преград - только вы и история, доступная в полном формате. Наш литературный портал создан для тех, кто любит комфорт: хотите читать с телефона - пожалуйста; предпочитаете ноутбук - идеально! Все книги открываются моментально и представлены полностью, без сокращений и скрытых страниц. Каталог жанров поможет вам быстро найти что-то по настроению: увлекательный роман, динамичное фэнтези, глубокую классику или лёгкое чтение перед сном. Мы ежедневно расширяем библиотеку, добавляя новые произведения, чтобы вам всегда было что открыть "на потом". Сегодня на siteknig.com доступно более 200000 книг - и каждая готова стать вашей новой любимой. Просто выбирайте, открывайте и наслаждайтесь чтением там, где вам удобно.

Комментарии (0)